Apprentissage transductif

PAC-Bayesian Theory for Transductive Learning
Luc Bégin, Pascal Germain, François Laviolette et Jean-Francis Roy

Cet article a été publié dans Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, 2014

Résumé: We propose a PAC-Bayesian analysis of the transductive learning setting, introduced by Vapnik [1998], by proposing a family of new bounds on the generalization error. Some of them are derived from their counterpart in the inductive setting, and others are new. We also compare their behavior.