Transductive Learning

PAC-Bayesian Theory for Transductive Learning

Luc Bégin, Pascal Germain, François Laviolette and Jean-Francis Roy

This paper has been published in the Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, 2014

Abstract: We propose a PAC-Bayesian analysis of the transductive learning setting, introduced by Vapnik [1998], by proposing a family of new bounds on the generalization error. Some of them are derived from their counterpart in the inductive setting, and others are new. We also compare their behavior.