Set Covering Machines and Reference-Free Genome Comparisons Uncover Predictive Biomarkers of Antibiotic Resistance

Alexandre Drouin

Department of Computer Science and Software Engineering, Université Laval
Department of Molecular Medicine, Université Laval

CCBC/GLBIO 2016
Toronto, Canada
May 17, 2016
Introduction

Biomarker: a **measurable characteristic** that is **predictive** of a phenotype

- Better understand the biological processes involved
- Develop diagnostic tests, new therapies and drug treatments
Formalization as a Supervised Learning Problem

Data Set

A data set is a collection of genomes and associated labels:

\[S \stackrel{\text{def}}{=} \{(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\} \sim D^m \]

- \(x \in \mathcal{X} \stackrel{\text{def}}{=} \{A, C, G, T\}^* \) is a genome
- \(y \in \{0, 1\} \) is a label (control or case)
- \(D \) is a data generating distribution

Objective

1. Define a suitable (vectorial) representation for genomes \(\phi : \mathcal{X} \rightarrow \mathbb{R}^d \)
2. Find a predictor \(h : \mathbb{R}^d \rightarrow \{0, 1\} \) that has a good generalization performance, i.e. that minimizes:

\[R(h) \stackrel{\text{def}}{=} \Pr_{(x,y) \sim D} [h(\phi(x)) \neq y] \]

3. The predictor must be interpretable!
Formalization as a Supervised Learning Problem

Data Set

A data set is a collection of genomes and associated labels:

\[S \overset{\text{def}}{=} \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \} \sim D^m \]

\(x \in \mathcal{X} \overset{\text{def}}{=} \{ A, C, G, T \}^* \) is a genome
\(y \in \{ 0, 1 \} \) is a label (control or case)
\(D \) is a data generating distribution

Objective

1. Define a suitable (vectorial) representation for genomes \(\phi : \mathcal{X} \rightarrow \mathbb{R}^d \)
2. Find a predictor \(h : \mathbb{R}^d \rightarrow \{ 0, 1 \} \) that has a good generalization performance, i.e. that minimizes:

\[R(h) \overset{\text{def}}{=} \Pr_{(x, y) \sim D} [h(\phi(x)) \neq y] \]

3. The predictor must be interpretable!
Formalization as a Supervised Learning Problem

Data Set

A data set is a collection of genomes and associated labels:

\[S \overset{\text{def}}{=} \left\{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \right\} \sim D^m \]

- \(x \in \mathcal{X} \overset{\text{def}}{=} \{ A, C, G, T \}^* \) is a genome
- \(y \in \{ 0, 1 \} \) is a label (control or case)
- \(D \) is a data generating distribution

Objective

1. Define a suitable (vectorial) representation for genomes \(\phi : \mathcal{X} \to \mathbb{R}^d \)
2. Find a predictor \(h : \mathbb{R}^d \to \{ 0, 1 \} \) that has a good generalization performance, i.e. that minimizes:

\[
R(h) \overset{\text{def}}{=} \Pr_{(x, y) \sim D} [h(\phi(x)) \neq y]
\]

3. The predictor must be interpretable!
Formalization as a Supervised Learning Problem

Data Set

A data set is a collection of genomes and associated labels:

\[S \overset{\text{def}}{=} \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \} \sim D^m \]

- \(x \in \mathcal{X} \overset{\text{def}}{=} \{ A, C, G, T \}^* \) is a genome
- \(y \in \{ 0, 1 \} \) is a label (control or case)
- \(D \) is a data generating distribution

Objective

1. Define a suitable (vectorial) representation for genomes \(\phi : \mathcal{X} \rightarrow \mathbb{R}^d \)
2. Find a predictor \(h : \mathbb{R}^d \rightarrow \{ 0, 1 \} \) that has a good generalization performance, i.e. that minimizes:

\[R(h) \overset{\text{def}}{=} \Pr_{(x,y) \sim D} [h(\phi(x)) \neq y] \]

3. The predictor must be interpretable!
Genome Representation

Definition

- **k-mer**: a sequence of *k* nucleotides
- **\(\mathcal{K} \)**: the set of all *k*-mers that are in at least one genome of *S*

Each genome is represented by its **k-mer profile**, which is a binary vector indicating the presence (1) or absence (0) of each *k*-mer.

\[
\mathcal{K} = \{ \text{CAGATA, GATAGA, GAACAG, CGATGA, AGATAG, AGAACA, ATAGAA, CCGGCT, AACAGC, TAGAAC, TTTCGG, AAATAC} \}
\]

\[
\mathbf{x} = \text{CAGATAGAACAGC}
\]

\[
\phi(\mathbf{x}) = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]
The Set Covering Machine (Marchand and Shawe-Taylor, 2002)

- **Input:** A set of *boolean-valued rules* (presence/absence of k-mers) and a *data set* (examples, labels)

- **Objective:** Find the *shortest* conjunction (logical-AND) or disjunction (logical-OR) of rules that *most accurately predicts* the labels
The Set Covering Machine (Marchand and Shawe-Taylor, 2002)

- **Input:** A set of boolean-valued rules (presence/absence of k-mers) and a data set (examples, labels)

- **Objective:** Find the shortest conjunction (logical-AND) or disjunction (logical-OR) of rules that most accurately predicts the labels
The Set Covering Machine (Marchand and Shawe-Taylor, 2002)

- **Input:** A set of **boolean-valued rules** (presence/absence of k-mers) and a **data set** (examples, labels)

- **Objective:** Find the **shortest** conjunction (logical-AND) or disjunction (logical-OR) of rules that **most accurately predicts** the labels

```
\phi(x) \rightarrow \text{Rule} \rightarrow \text{True} \quad \phi(x) \rightarrow \text{Rule} \rightarrow \text{False}
```

```
\text{Candidate Rules} \quad \text{Data Set}
\begin{array}{llll}
\text{Rule} & \text{Rule} & \cdots & \text{Rule} \\
\text{x1} & \text{y1} & \cdots & \text{xm} \\
\text{y2} & \text{y3} & \cdots & \text{ym}
\end{array}
```

```
\phi(x) \rightarrow \text{Rule} \rightarrow \text{AND} \rightarrow \text{Rule} \rightarrow \text{AND} \rightarrow \text{Rule}
```

```
\text{Model (h)}
\begin{array}{llll}
\text{Rule} & \text{AND} & \text{Rule} & \text{AND} \\
\text{y = 1} & \text{True} \rightarrow \text{Rule} \\
\text{y = 0} & \text{False \rightarrow Rule}
\end{array}
```
What is special about this learning algorithm?

- Feature selection is **not required**
- **Out-of-core** implementation: data is accessed in small blocks
- **Theoretical performance guarantees** that are backed by empirical results
What is special about this learning algorithm?

- Feature selection is **not required**
- **Out-of-core** implementation: data is accessed in small blocks
- **Theoretical performance guarantees** that are backed by empirical results
What is special about this learning algorithm?

- Feature selection is **not required**
- **Out-of-core** implementation: data is accessed in small blocks
- **Theoretical performance guarantees** that are backed by empirical results
The genomes were assembled and subsequently split into 31-mers.

Between 8,058,479 and 123,466,989 \(k \)-mers.
Data sets

The genomes were assembled and subsequently split into 31-mers. Between 8,058,479 and 123,466,989 k-mers.

Talk by Frédéric Raymond, Wednesday at 4:40 pm
The models are accurate and sparse

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.970</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.927</td>
<td>2.6</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.980</td>
<td>3.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.979</td>
<td>1.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.821</td>
<td>1.4</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.682</td>
<td>3.1</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.969</td>
<td>1.4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.950</td>
<td>1.0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.825</td>
<td>4.9</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.730</td>
<td>1.4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.927</td>
<td>1.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.733</td>
<td>1.6</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.987</td>
<td>1.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.963</td>
<td>2.0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.969</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- The average number of k-mers contributing to the model is less than 5.
- For 12/17 data sets the error rate is smaller than 10%.
- The least accurate models were obtained for *M. tuberculosis* and *P. aeruginosa*.

▶ Is the genome enough to predict antibiotic resistance?
The models are accurate and sparse

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.970</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.927</td>
<td>2.6</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.989</td>
<td>3.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.979</td>
<td>1.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.821</td>
<td>1.4</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.682</td>
<td>3.1</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.969</td>
<td>1.4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.950</td>
<td>1.0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.825</td>
<td>4.9</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.730</td>
<td>1.4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.927</td>
<td>1.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.733</td>
<td>1.6</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.987</td>
<td>1.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.963</td>
<td>2.0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.969</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- The average number of k-mers contributing to the model is less than 5.
- For 12/17 data sets the error rate is smaller than 10%.
- The least accurate models were obtained for *M. tuberculosis* and *P. aeruginosa*.

▶ Is the genome enough to predict antibiotic resistance?
The models are accurate and sparse

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.970</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.927</td>
<td>2.6</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.989</td>
<td>3.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.979</td>
<td>1.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.821</td>
<td>1.4</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.682</td>
<td>3.1</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.969</td>
<td>1.4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.950</td>
<td>1.0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.825</td>
<td>4.9</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.730</td>
<td>1.4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.927</td>
<td>1.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.733</td>
<td>1.6</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.987</td>
<td>1.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.963</td>
<td>2.0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.969</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- The average number of k-mers contributing to the model is less than 5.
- For 12/17 datasets the error rate is smaller than 10%.
- The least accurate models were obtained for *M. tuberculosis* and *P. aeruginosa*.

▶ Is the genome enough to predict antibiotic resistance?
The models are accurate and sparse

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.970</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.927</td>
<td>2.6</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.989</td>
<td>3.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.979</td>
<td>1.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.821</td>
<td>1.4</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.682</td>
<td>3.1</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.969</td>
<td>1.4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.950</td>
<td>1.0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.825</td>
<td>4.9</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.730</td>
<td>1.4</td>
</tr>
<tr>
<td>Levofloxacil</td>
<td>0.927</td>
<td>1.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.733</td>
<td>1.6</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.987</td>
<td>1.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.963</td>
<td>2.0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.969</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- The average number of k-mers contributing to the model is less than 5.
- For 12/17 data sets the error rate is smaller than 10%.
- The least accurate models were obtained for **M. tuberculosis** and **P. aeruginosa**.

▶ Is the genome enough to predict antibiotic resistance?
The models are accurate and sparse

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Sparsity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.970</td>
<td>3.3</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.927</td>
<td>2.6</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.989</td>
<td>3.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.979</td>
<td>1.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.821</td>
<td>1.4</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.682</td>
<td>3.1</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.969</td>
<td>1.4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.950</td>
<td>1.0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.825</td>
<td>4.9</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.730</td>
<td>1.4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.927</td>
<td>1.2</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.733</td>
<td>1.6</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.987</td>
<td>1.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.963</td>
<td>2.0</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.969</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- The average number of k-mers contributing to the model is less than 5.

- For 12/17 data sets the error rate is smaller than 10%.

- The least accurate models were obtained for *M. tuberculosis* and *P. aeruginosa*.
 - Is the genome enough to predict antibiotic resistance?
The models are interpretable

Within hours of computation and without prior knowledge, known antibiotic resistance mechanisms have been recovered.
The models are interpretable.

M. tuberculosis

- Isoniazid
 - 1.00
 - 15
- Rifampicin
 - 0.95
 - 6
 - 1

S. pneumoniae

- Erythromycin
 - 0.85
 - 31
 - 3

C. difficile

- Azithromycin
 - 0.79
 - 2
- Clarithromycin
 - 0.83
 - 17
- Clindamycin
 - 0.23
 - 616
 - 5

Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities.

Cade CE¹, Dlouhy AC, Medzihradszky KF, Salas-Castillo SP, Ghiladi RA.
The models are interpretable

\[\begin{align*}
M.\text{ tuberculosis} & \quad S.\text{ pneumoniae} \\
\text{Isoniazid} & \quad \text{Erythromycin} \\
1.00 & \quad 0.85 \\
15 & \quad 31 \\
\text{Rifampicin} & \quad 0.07 \\
6 & \quad 19 \\
& \quad 19 \\
\text{Azithromycin} & \quad \text{Clarithromycin} \\
2 & \quad 17 \\
0.79 & \quad 0.83 \\
0.79 & \quad 0.83 \\
0.23 & \quad 0.23 \\
\text{Clindamycin} & \quad \text{Clindamycin} \\
3 & \quad 5 \\
0.85 & \quad 0.19
\end{align*} \]

\[\begin{align*}
\text{katG} & \quad \text{Catalase-Peroxydase} \\
\text{rpoB} & \quad \text{RNA Polymerase }\beta\text{-Subunit} \\
\text{mel} & \quad \text{ABC Transporter ATPase Subunit} \\
\text{metE} & \quad \text{Methionine Synthase} \\
\text{ermB} & \quad \text{rRNA Adenine N-6-Methyltransferase}
\end{align*} \]

\[\begin{align*}
\text{Penicillin-Binding Protein} \\
\text{Tn6194-like Conjugative Transposon} \\
\text{Tn6110 Transposon}
\end{align*} \]

Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis.

Taniguchi H\(^1\), Aramaki H, Nikaido Y, Mizuguchi Y, Nakamura M, Koga T, Yoshida S.
The models are interpretable

M. tuberculosis
- Isoniazid
 - 1.00
 - 15
 - 0.95
 - 6

S. pneumoniae
- Erythromycin
 - 0.85
 - 31

C. difficile
- Azithromycin
 - 0.79
 - 2

Genomic Biomarker Discovery

Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible.

Ambrose KD, *Nisbet R*, *Stephens DS*.

katG - Catalase-Peroxidase

rpoB - RNA Polymerase β-Subunit

mel - ABC Transporter ATPase Subunit

metE - Methionine Synthase

ermB - rRNA Adenine N-6-Methyltransferase

Penicillin-Binding Protein

Tn6194-like Conjugative Transposon

Tn6110 Transposon
The models are interpretable

M. tuberculosis
- Isoniazid
- Rifampicin

S. pneumoniae
- Erythromycin

C. difficile
- Azithromycin
- Clindamycin

The effects of methionine acquisition and synthesis on *Streptococcus pneumoniae* growth and virulence.

The models are interpretable

M. tuberculosis
- Isoniazid
 - 1.00
 - 15
- Rifampicin
 - 0.95
 - 6

S. pneumoniae
- Erythromycin
 - 0.85
 - 31

C. difficile
- Azithromycin
 - 0.79
 - 2
- Clarithromycin
 - 0.79
 - 17
- Clindamycin
 - 0.83
 - 616

Research:

The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm(B) genes.

Farrow KA¹, Lyras D, Rood JI.
Going beyond \(k \)-mers... with \(k \)-mers

- Known resistance conferring mutations were retrieved (S315G, S315I, S315N and S315T)

- The model captures the absence of the wild-type sequence, efficiently including the presence of all these variants.
Known resistance conferring mutations were retrieved (S315G, S315I, S315N and S315T).

The model captures the absence of the wild-type sequence, efficiently including the presence of all these variants.
Conclusion

- **Scalable:** out-of-core machine learning-based method
- **Accurate:** models of antibiotic resistance with low error rates
- **Interpretable:** models highlight the importance of a small set of genomic loci
- **Wide applicability:** applicable to other phenotypes, organisms
- **Theoretical performance guarantees** support the applicability of the method in this challenging setting
Conclusion

- **Scalable:** out-of-core machine learning-based method

- **Accurate:** models of antibiotic resistance with low error rates

- **Interpretable:** models highlight the importance of a small set of genomic loci

- **Wide applicability:** applicable to other phenotypes, organisms

- **Theoretical performance guarantees** support the applicability of the method in this challenging setting
Conclusion

- **Scalable:** out-of-core machine learning-based method
- **Accurate:** models of antibiotic resistance with low error rates
- **Interpretable:** models highlight the importance of a small set of genomic loci
- **Wide applicability:** applicable to other phenotypes, organisms
- **Theoretical performance guarantees** support the applicability of the method in this challenging setting
Conclusion

- **Scalable:** out-of-core machine learning-based method
- **Accurate:** models of antibiotic resistance with low error rates
- **Interpretable:** models highlight the importance of a small set of genomic loci
- **Wide applicability:** applicable to other phenotypes, organisms
- **Theoretical performance guarantees** support the applicability of the method in this challenging setting
Conclusion

- **Scalable:** out-of-core machine learning-based method
- **Accurate:** models of antibiotic resistance with low error rates
- **Interpretable:** models highlight the importance of a small set of genomic loci
- **Wide applicability:** applicable to other phenotypes, organisms
- **Theoretical performance guarantees** support the applicability of the method in this challenging setting
Future Works

- *k*-mer abundances instead of presence/absence
- Phylogeny aware Set Covering Machine (population structure)
- Integrate more data (transcriptomics, epigenetics)
- Application to human genomes
Thank you!
(Poster 168, tomorrow)

Sébastien Giguère
Maxime Déraspe
François Laviolette
Mario Marchand
Jacques Corbeil

KOVER
http://github.com/aldro61/kover

Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
Alexandre Drouin, Sébastien Giguère, Maxime Déraspe, Mario Marchand, Michael Tyers, Vivian G Loo, Anne-Marie Bourgault, François Laviolette, Jacques Corbeil
doi: http://dx.doi.org/10.1101/045153

Contact: alexandre.drouin.8@ulaval.ca
Choosing the k-mer Length

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SCM-31</th>
<th>SCM-CV</th>
<th>k-mer length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.030 (3.3)</td>
<td>0.032 (3.2)</td>
<td>40.0 ± 23.0</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.073 (2.6)</td>
<td>0.085 (3.0)</td>
<td>41.0 ± 31.3</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.011 (3.0)</td>
<td>0.018 (2.9)</td>
<td>26.0 ± 12.0</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.021 (1.4)</td>
<td>0.011 (1.9)</td>
<td>56.0 ± 21.6</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.020 (1.0)</td>
<td>0.020 (1.0)</td>
<td>39.0 ± 16.0</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.179 (1.4)</td>
<td>0.164 (1.2)</td>
<td>49.0 ± 22.7</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.021 (1.0)</td>
<td>0.021 (1.0)</td>
<td>24.0 ± 4.6</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.318 (3.1)</td>
<td>0.353 (2.3)</td>
<td>35.0 ± 24.6</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.031 (1.4)</td>
<td>0.006 (1.0)</td>
<td>49.0 ± 6.0</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.050 (1.0)</td>
<td>0.048 (1.0)</td>
<td>25.0 ± 4.9</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.175 (4.9)</td>
<td>0.188 (4.9)</td>
<td>43.0 ± 28.2</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.270 (1.4)</td>
<td>0.270 (1.8)</td>
<td>39.0 ± 28.6</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.072 (1.2)</td>
<td>0.073 (1.4)</td>
<td>34.0 ± 12.7</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.267 (1.6)</td>
<td>0.276 (2.0)</td>
<td>32.0 ± 14.5</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.013 (1.1)</td>
<td>0.011 (1.0)</td>
<td>50.0 ± 28.8</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.037 (2.0)</td>
<td>0.038 (1.9)</td>
<td>39.0 ± 29.6</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.031 (1.1)</td>
<td>0.031 (1.1)</td>
<td>55.0 ± 24.6</td>
</tr>
</tbody>
</table>
Can we expect good generalization?

We can **bound the risk** of a predictor based on its **performance on the training set**. The following term bounds the risk of every conjunction h of rules in \mathcal{R} with probability $\geq 1 - \delta$.

Occam’s Razor Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - r} \left[\ln \left(\binom{m}{r} \right) + \ln \left(2 \cdot 4^k \right) - \ln (\zeta(r) \cdot \zeta(|h|) \cdot \delta) \right],
$$

where r is the number of errors on the training set,

$|h|$ is the number of rules in the conjunction,

ζ is any function such that $\sum_{b \in \mathbb{N}} \zeta(b) \leq 1$

- The combinatorial term dominates the bound even for classifiers that make few errors
- The bound seems to indicate bad generalization performance.
Can we expect good generalization?

We can **bound the risk** of a predictor based on its **performance on the training set**. The following term bounds the risk of every conjunction h of rules in \mathcal{R} with probability $\geq 1 - \delta$.

Occam’s Razor Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - r} \left[\ln \left(\binom{m}{r} \right) + \ln \left(\frac{2 \cdot 4^k}{|h|} \right) - \ln(\zeta(r) \cdot \zeta(|h|) \cdot \delta) \right],
$$

where r is the number of errors on the training set, $|h|$ is the number of rules in the conjunction, ζ is any function such that $\sum_{b \in \mathbb{N}} \zeta(b) \leq 1$.

- The **combinatorial term** dominates the bound even for classifiers that make few errors.
- The bound seems to indicate **bad generalization performance**.
Can we expect good generalization?

We can **bound the risk** of a predictor based on its **performance on the training set**. The following term bounds the risk of every conjunction h of rules in R with probability $\geq 1 - \delta$.

Occam’s Razor Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - r} \left[\ln \binom{m}{r} + \ln \left(\frac{2 \cdot 4^k}{|h|} \right) - \ln(\zeta(r) \cdot \zeta(|h|) \cdot \delta) \right],
$$

where r is the number of errors on the training set,

$|h|$ is the number of rules in the conjunction,

ζ is any function such that $\sum_{b \in \mathbb{N}} \zeta(b) \leq 1$

- The **combinatorial term** dominates the bound even for classifiers that make few errors
- The bound seems to indicate **bad generalization performance**.
Can we expect good generalization?

We can bound the risk of a predictor based on its performance on the training set. The following term bounds the risk of every conjunction \(h \) of rules in \(\mathcal{R} \) with probability \(\geq 1 - \delta \).

Occam’s Razor Bound

\[
\epsilon \overset{\text{def}}{=} \frac{1}{m - r} \left[\ln \binom{m}{r} + \ln \left(2 \cdot 4^k \right) - \ln(\zeta(r) \cdot \zeta(|h|) \cdot \delta) \right],
\]

where \(r \) is the number of errors on the training set,

\(|h| \) is the number of rules in the conjunction,

\(\zeta \) is any function such that \(\sum_{b \in \mathbb{N}} \zeta(b) \leq 1 \).

- The combinatorial term dominates the bound even for classifiers that make few errors.
- The bound seems to indicate bad generalization performance.
Can we expect good generalization?

In the sample compression framework, the predictor h is specified using a small set of training examples (\mathcal{Z}_i):

\[
\epsilon \overset{\text{def}}{=} \frac{1}{m - |h| - r} \left[\ln \left(\frac{m}{|h|} \right) + \ln \left(\frac{m - |h|}{r} \right) \right]
\]

\[
+ \sum_{x \in \mathcal{Z}_i} \ln(2 \cdot |x|) - \ln(\zeta(|h|) \cdot \zeta(r) \cdot \delta)
\]

where r is the number of errors made on $S \setminus \mathcal{Z}_i$.

- The bound does not depend on k anymore.
- We can consider exponentially more complex feature spaces without any penalty on the generalization error.
Can we expect good generalization?

In the sample compression framework, the predictor h is specified using a **small** set of training examples (\mathcal{Z}_i):

Sample Compression Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - |h| - r} \left[\ln \left(\frac{m}{|h|} \right) + \ln \left(\frac{m - |h|}{r} \right) \right. \\
+ \left. \sum_{x \in \mathcal{Z}_i} \ln(2 \cdot |x|) - \ln(\zeta(|h|) \cdot \zeta(r) \cdot \delta) \right],
$$

where r is the number of errors made on $S \setminus \mathcal{Z}_i$.

- The bound does not depend on k anymore.
- We can consider **exponentially more complex** feature spaces without any penalty on the generalization error.
Can we expect good generalization?

In the sample compression framework, the predictor h is specified using a small set of training examples (Z_i):

Sample Compression Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - |h| - r} \left[\ln \left(\frac{m}{|h|} \right) + \ln \left(\frac{m - |h|}{r} \right) + \sum_{x \in Z_i} \ln(2 \cdot |x|) - \ln(\zeta(|h|) \cdot \zeta(r) \cdot \delta) \right],
$$

where r is the number of errors made on $S \setminus Z_i$.

- The bound does not depend on k anymore
- We can consider exponentially more complex feature spaces without any penalty on the generalization error
Can we expect good generalization?

In the sample compression framework, the predictor h is specified using a small set of training examples (\mathcal{Z}_i):

Sample Compression Bound

$$
\epsilon \overset{\text{def}}{=} \frac{1}{m - |h| - r} \left[\ln \left(\frac{m}{|h|} \right) + \ln \left(\frac{m - |h|}{r} \right)
+ \sum_{x \in \mathcal{Z}_i} \ln(2 \cdot |x|) - \ln(\zeta(|h|) \cdot \zeta(r) \cdot \delta) \right],
$$

where r is the number of errors made on $S \setminus \mathcal{Z}_i$.

- The bound does not depend on k anymore
- We can consider exponentially more complex feature spaces without any penalty on the generalization error
Replacing Cross-Validation by Bound-Selection

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Cross-validation</th>
<th>Bound Selection</th>
<th>Bound Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.030 (3.3)</td>
<td>0.025 (2.6)</td>
<td>0.251</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.073 (2.6)</td>
<td>0.089 (1.4)</td>
<td>0.379</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.011 (3.0)</td>
<td>0.026 (2.6)</td>
<td>0.256</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.021 (1.4)</td>
<td>0.018 (1.8)</td>
<td>0.181</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.020 (1.0)</td>
<td>0.020 (1.0)</td>
<td>0.174</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>0.179 (1.4)</td>
<td>0.172 (1.1)</td>
<td>0.564</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.021 (1.0)</td>
<td>0.021 (1.0)</td>
<td>0.327</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>0.318 (3.1)</td>
<td>0.392 (1.4)</td>
<td>0.695</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.031 (1.4)</td>
<td>0.027 (1.0)</td>
<td>0.358</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.050 (1.0)</td>
<td>0.050 (1.0)</td>
<td>0.393</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>0.175 (4.9)</td>
<td>0.177 (2.7)</td>
<td>0.493</td>
</tr>
<tr>
<td>Doripenem</td>
<td>0.270 (1.4)</td>
<td>0.275 (1.3)</td>
<td>0.562</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0.072 (1.2)</td>
<td>0.072 (1.0)</td>
<td>0.324</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.267 (1.6)</td>
<td>0.284 (1.7)</td>
<td>0.596</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>0.013 (1.1)</td>
<td>0.011 (1.0)</td>
<td>0.142</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.037 (2.0)</td>
<td>0.035 (2.0)</td>
<td>0.210</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.031 (1.1)</td>
<td>0.027 (1.0)</td>
<td>0.164</td>
</tr>
</tbody>
</table>
Spurious Correlations can be Overcome

a) Ethambutol Isoniazid Pyrazinamide Rifampicin Streptomycin

1.00 1.00 1.00 1.00 1.00
Round 1 (0.050) Round 2 (0.059) Round 3 (0.059) Round 4 (0.061) Round 5 (0.061) Round 6 (0.072)

katG - Catalase-Peroxidase
rpoB - RNA Polymerase β-Subunit
rpsL - 30S Ribosomal Protein S12

Alexandre Drouin (Université Laval)