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We present MHC-NP, a tool for predicting peptides naturally processed by the MHC pathway.
The method was part of the 2nd Machine Learning Competition in Immunology and yielded
state-of-the-art accuracy for the prediction of peptides eluted from human HLA-A*02:01,
HLA-B*07:02, HLA-B*35:01, HLA-B*44:03, HLA-B*53:01, HLA-B*57:01 and mouse H2-Db and
H2-Kb MHC molecules. We briefly explain the theory and motivations that have led to
developing this tool. General applicability in the field of immunology and specifically
epitope-based vaccine are expected. Our tool is freely available online and hosted by the
Immune Epitope Database at http://tools.immuneepitope.org/mhcnp/.
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1. Introduction

Epitope-based vaccines show great promise for diseases
for which current approaches, such as pathogen attenuation,
are not easily feasible or efficacious. Such vaccines have the
advantage of being simpler to produce and induce a very
specific immune response by targeting the immunogenic
region of an antigen and specific MHC alleles of the host
(Toussaint and Kohlbacher, 2009). Computer assisted methods
for the identification of immunogenic epitopes represent an
important step in facilitating the creation of these next
generation vaccines. Ideally, such vaccines could be adapted
to target specific portions of the population, such as pregnant
women and/or immunocompromised individuals, for which
attenuated vaccines may present greater risks.
. Giguère),
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Themajor histocompatibility complex (MHC) is responsible
for specific antigen recognition and inducing an appropriate
cellular response. The MHC molecules are part of a complex
pathway responsible for presenting antigens on the surface of
antigen-presenting cells (APCs). Such antigens are presented
under the form of MHC–peptide complexes, where the peptide
is a fragment of the antigen protein's sequence. Once MHC–
peptide complexes are presented on an APC's surface, T cells
recognise specific complexes and trigger an appropriate
immune response. MHC molecules are categorised in two
classes, MHC-class I, present antigens for CD8 T-cell driven
responses and MHC-II, in contrast, present antigens for CD4
T-cell responses. Both pathways are complex and the binding
of a peptide to a MHC molecule can be verified by in vitro or
in silico methods.

Numerous approaches have been proposed for identifying
MHC–peptide complexes (Zhang et al., 2012; Lundegaard et
al., 2008; Giguère et al., 2013). Most of these methods have
focused on predicting the binding affinity of a given peptide
and a MHC molecule. Unfortunately, the binding of a peptide
and a MHC molecule is insufficient to ensure that the peptide
will be processed to the surface of the cell. Indeed, only a
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Fig. 1. An illustration of the different peptide classes contained in the
datasets.
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subset of the peptides that bind to an MHC molecule can be
naturally processed. Predicting such peptides is a difficult
task.

In an effort to refine epitopic peptide identification
methods, we propose a method to predict if a peptide is
naturally processed by the MHC pathway. Our method has
been trained on in vivo and in vitro data provided by D.K.
Crockett and V. Brusic (Zhang and Brusic, 2013). The proposed
method is based on statistical learning. Therefore, given that
training data is available, it can be used for both MHC-I and
MHC-II pathways. In addition, if used in conjunction with any
binding affinity prediction tool, our method can validate if
peptides can be processed by the MHC pathway. In the context
of the 2012 Machine Learning Competition in Immunology
(MLI), we have obtained empirical resultswhich demonstrated
that our method will have promising utility in immunology,
vaccinology, and transplant rejection.

2. Material and methods

2.1. Data

The datasets used to train our method were those provided
to the participants of the 2012Machine Learning Competition in
Immunology. These datasets comprised eight MHC-I molecules,
composed of six humanmolecules (HLA-A*02:01, HLA-B*07:02,
HLA-B*35:01, HLA-B*44:03, HLA-B*53:01, and HLA-B*57:01)
and two mouse molecules (H2-Db and H2-Kb) (Zhang and
Brusic, 2013). For each target molecule, three sets of peptides
were provided: binding peptides, non-binding peptides and
peptides obtained by elution. The peptides obtained by elution
are naturally processed by theMHC-I pathway. Ourmethodwas
tested using a set of data composed of binding, non-binding and
naturally processed peptides. This testing datawere provided by
the organisers of the MLI competition and made publicly
available http://bio.dfci.harvard.edu/DFRMLI/HTML/natural.php.

2.1.1. Discussion
From a machine learning point of view (see Hastie et al.

(2001) for an introductory book), the training data were
challenging in many ways. First, most learning algorithms
receive data under the form of real valued feature vectors,
although the training examples consisted of sequences of amino
acids. Second, the length of training peptides varied from8 to 11
amino acids. Most learning algorithms need to compute vector
operations which are only defined for vectors of the same
length. Therefore, any real valued vector representation of a
peptide that depends on its length would ultimately fail. When
facing such a problem, some authors have preferred to group
peptides by length and to define independent learning
problems for each length. This solution inevitably leads to
inferior accuracy, since this severely reduces the number of
training examples for each problem. The next section will
introduce the concept of string kernels, which bring a solution
to these two problems.

The particular case of identifying naturally processed
peptides cannot be described as a typical binary or multiclass
classification problem. Indeed, in this classification scheme,
each example may only belong to one of the pre-defined
classes. Yet, in our context, naturally processed peptides
are all known to bind the MHC, whereas only 5–15% of the
binding peptides are naturally processed. Moreover, the
problem has inherent noise in the data, due to the fact that
a peptide can be a known binder, but not yet identified by
elution. This implies that the eluted peptide class is a subset
of the binding peptide class as illustrated in Fig. 1. We
therefore need to use a learning algorithm that is robust to
noise and that accounts for the relationship between these
classes.

2.1.2. Preprocessing the data
The provided data were obtained through experimental

processes and, therefore, required a small amount of
preprocessing to ensure that it contained no inconsistencies.
First, for eachMHCmolecule, peptides thatwere simultaneously
in the non-binding and binding sets were discarded. Second,
peptides that were simultaneously in the eluted and binding
sets were removed from the binding set. Note that eluted
peptides also bind to MHC molecules, although we preferred
having the eluted peptides in a distinct set. These two steps
ensured that the three sets of peptides were disjoint and
therefore that the peptides comprised in each set shared one
common characteristic (eluted-binder, non-eluted-binder, non-
binder). We will respectively refer to these three sets of
peptides as ‘E’, ‘B’ and ‘N’.

2.2. Learning approach

Machine learning is a method of choice for building
predictive software when facing complex phenomena.
Classification is the task of assigning one of possibly many
pre-defined classes to each example produced by a phenomena
of interest. In this paper, wewill restrict ourselves to the case of
binary classification, where each example can only belong to
two classes.

A learning algorithm shouldminimize the task loss. Here, the
task is to distinguish naturally processed peptides from all other
peptides (non-eluted-binders and non-binders). Therefore,
while developing our method, we have focussed on learning
a predictor for peptides that are naturally processed by the
MHC pathway. Consequently, we have only considered the
following two classes: peptides that are naturally processed
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(E) and peptides that are not naturally processed (B and N). This
predictorwas presented to theMLI 2012 competition, ultimately
yielding excellent prediction accuracy. Throughout this paper,
we will refer to this model as (E vs BN).

In an attempt to further improve this method, we have,
since the MLI competition, developed an alternate model.
This model consists in learning two predictors: a predictor to
distinguish binding peptides (E and B) from non-binding
peptides (N) and a predictor to distinguish eluted peptides
(E) from binding peptides (B). The prediction is done in a
decision tree fashion: the (EB vs N) predictor is first applied,
then, only if the peptide is predicted to be a binder, the (E vs B)
predictor is applied to determine if the peptide is naturally
processed. Throughout this paper, wewill refer to thismodel as
(EB vs N + E vs B).

For comparison purposes, a binding/non-binding predictor
was learned to distinguish binding peptides (E + B) from
non-binding peptides (N). This predictor purposely does not
distinguish naturally processed peptides frombinding peptides.
Such a predictor allows to establish a direct comparison to
current tools, which rely on MHC-peptide binding affinity. This
predictor also allows to measure the capability of our method
to discriminate naturally processed peptides from binding
peptides.
2.2.1. Learning algorithm
To learn the predictors described in the previous section,

we have used the soft-margin support vector machine (SVM)
algorithm originally proposed by Cortes and Vapnik (1995).
This supervised learning algorithm is considered to be the
state of the art for classification problems.

The input of the SVM algorithm consists in a set of pairs.
For each of these pairs, the first element is an example and
the second element is a class that has been attributed to the
example by an expert. First, each learning example is mapped
to a possibly high dimensional vector space called the feature
space. Then, the SVM finds a separating hyperplane that
splits the feature space in two halves, such that examples
from the same class lie on the same side. Also, the hyperplane
is such that all learning examples have the greatest Euclidian
distance (also known as the geometric margin) from it. The
soft margin SVM provides a parameter allowing a trade-off
between the number of classification errors and the size of
the geometric margin on the correctly classified examples.
This allows SVM to tolerate that certain examples of a given
class be on the wrong side of the hyperplane and thus
prevent the hyperplane from being affected by noise in the
data. This parameter is generally tuned by cross-validation
techniques that are described in Section 3.

To perform predictions, new testing examples are first
mapped to the same space as the training examples. Then,
their classes are assigned depending on their location with
respect to the hyperplane. The greater the geometric margin
for an example, the more confident the predictor is about
its predicted class. This notion of margin can be further
transformed into a probability estimate using techniques
such as the Platt scaling (Platt, 1999). Our proposed tool:
MHC-NP, outputs, for each new peptide, a probability estimate
of the peptide being naturally processed by the specified MHC
pathway.
2.2.2. From sequences to feature vectors
The kernel trick (Shawe-Taylor and Cristianini, 2004) is a

method to map complex structures, such as strings, to a high
dimensional vector space inwhich the dot product is defined. A
kernel function is a function that implicitly computes the dot
product in this high dimensional space, without explicitly
mapping the structures to this space. Such functions therefore
avoid the prohibitive computational cost of computing dot
products in high dimensional vector spaces. Recall that every
algorithm that constructs a hyperplane heavily depends on dot
product operations. In addition, as for dot products, kernels can
be interpreted as similarity functions. The more similar two
examples are, the greater the kernel function value. Kernel
functions have been proposed for a variety of biological
structures including protein primary structure (Saigo et al.,
2004) and protein tertiary structure (Qiu et al., 2007).

Many machine learning algorithms like the SVM have
been kernelized by substituting the dot product operation of
their objective and prediction functions by kernel function
evaluations. Such kernelized algorithms can work with
complex data, such as strings, given that there exists a kernel
defined for this data type. Kernels that compute the similarity
between two strings are called string kernels. There is no
doubt that string kernels have been partly responsible for the
increased use of machine learning algorithms in biology.

2.2.3. The generic string kernel
As highlighted in the previous section, string kernels are

similarity functions that can be used with kernelized learning
algorithms. A common approach is to compare strings by
their common k-mers for a chosen value of k. For example,
“LFQLITA” and “LFQRPPLI” can be split into their 2-mers,
which are respectively (LF, FQ, QL, LI, TA) and (LF, FQ, QR, RP,
PP, PL, LI). Then, the similarity value between these two
sequences is given by the number of common 2-mers. Here,
the similarity is 3, since the sequences have LF, FQ, and LI as
common 2-mers. This similarity function corresponds to the
Spectrumkernel (Leslie et al., 2002). Note that this kernel allows
the comparison of strings of different lengths and corresponds
to a dot product in a high dimensional vector space. Therefore,
such kernels alleviate the need for considering peptides of
different lengths separately and allow better usage of the data.

Comparing peptides using k-mer is a simple approach
that gives a broad estimate of their similarity. However, for
most proteins, notably for MHC, peptide–protein interactions
occur at a very specific location known as the binding site.
The relative position of residues in this binding site and
their physicochemical properties are key aspects that drive
the interaction. Nevertheless, the Spectrum kernel does not
account for these two important biological features.

In an effort to consider the relative position of residues in
similarity function, Meinicke et al. (2004) proposed the Oligo
kernel, which was the first string kernel to account for the
relative position of k-mers. Instead of counting the number of
common k-mer, the Oligo kernel assigns a weight to each
common k-mer depending on their relative positions in
the two peptides. For example, in the peptides “LFQLITA”
and “LFQRPPLI”, the 2-mers “LF” and “FQ” share the same
position. In contrast, the 2-mer “LI” is respectively at position
4 and 7. For this reason, the contribution of “LF” and “FQ” to
the similarity should be greater than the contribution of “LI”.
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In this sense, the author of the Oligo kernel proposed to weight
the contribution of common k-mers by using a function
inversely proportional to their distance in the peptides.

Moreover, in an attempt to account for the physicochemical
properties of the residues in the binding site, Toussaint et al.
(2010) proposed to weight the contribution of k-mers as
function of their physicochemical properties. This is based on
the fact that an amino acid in a peptide can sometimes be
substituted by another amino acid with similar properties, such
as hydrophobicity, charge ormolecularweight,without affecting
the peptide's binding affinity. Toussaint and collaborators
proposed to incorporate such knowledge in the kernel
function by using the physicochemical properties of their
amino acids to compare k-mers.

Inspired by the ideas ofMeinicke et al. (2004) and Toussaint
et al. (2010), Giguère et al. (2013) proposed the generic string
(GS) kernel. This kernel accounts for the physicochemical
properties and the relative position of amino acids in the
comparison of k-mers. The GS kernel was shown to outperform
state-of-the-art prediction methods on single-target and
pan-specific peptide–MHC-II binding affinity prediction
benchmark datasets and three Quantitative Structure
Affinity Model benchmark datasets. Giguère et al. (2013)
have also proposed a dynamic programming algorithm for
the fast computation of their kernel and have shown that the
GS kernel induces a dot product in a high dimensional vector
space. The GS kernel has four parameters, namely, two for
controlling the importance of comparing the physico-chemical
properties of amino acids, one for setting the maximum length
of k-mers and one controlling the penalty enquired due to the
relative distance of k-mers. As described in the next section,
these parameters can be tuned by cross-validation.

2.2.4. Implementation details
In order to ensure reproducibility, all experimentations

were conducted using the SVM implementation of the
Scikit-Learn library (Pedregosa et al., 2011) and the GS
kernel (Giguère et al., 2013), available at http://graal.ift.
ulaval.ca/gs-kernel/, both free and open source softwares.

3. Theory/calculation

3.1. Assessing model performance

To assess to prediction accuracy of the different approaches,
we used the area under the ROC curve (AUC) and the F1 score
(Bradley, 1997). In addition, we have used the sensitivity and
the specificity to analyse the performance of our method.

The Receiver Operating Characteristic (ROC) curve provides
a graphical illustration of a predictor's recall and specificity by
plotting the recall and (1 — specificity) as a function of the
threshold. This type of curve can be used to select a threshold
with respect to some trade-off between recall and specificity.
The AUC is a threshold independent metric obtained by
computing the area under the ROC curve. This metric is closely
related to the one used by (Zhang and Brusic, 2013) to assess
the performance of the methods submitted to the 2012 MLI
competition, which is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Specificity

p
þ Sensitivity � 10−5

: ð1Þ
Indeed, Brusic et al. (2013) ranked themethods by selecting
the threshold maximizing, thus making their metric threshold
independent.

In the field of machine learning, the accuracy is a threshold
dependent metric that is used to evaluate prediction methods.
Unfortunately, the datasets used to train our method are
unbalanced, whichmeans that the number of eluted peptide is
much smaller than the number of non-eluted peptides. Thus,
using the accuracy to evaluate the performance of our method
could be misleading. For example, if only 5% of the peptides
contained in a dataset were eluted, a predictor could abstain
from predicting any peptide as being eluted and would
nevertheless achieve an accuracy of 95%. For this reason, we
propose to use the F1 score to evaluate our method's
discriminative power. The F1 score is given by Eq. (2) and its
value is comprised between 0 and 1. This metric has the
advantage of being unaffected by class imbalance.

F1 score ¼ 2 � precision � sensitivity
precisionþ sensitivity

ð2Þ

It is important to mention that small changes in the
decision threshold can lead to important differences in
threshold dependent metrics such as the F1 score. However,
it is crucial to compare the ability of a method to estimate a
good threshold using the training data. Without a threshold,
a method can only provide a confidence score to indicate
how confident it is about an example belonging to a target
class. Although, for most real world applications, a binary
decision must be made. Thus, a threshold is required to
distinguish between a positive and a negative decision.
Moreover, recent learning paradigms, such as transductive
learning (Joachims, 1999), domain adaptation (Jiang, 2008)
and positive and unlabelled learning (Elkan and Noto, 2008)
aim at learning models specifically designed for a target task
by using abundant unlabelled data. These new approaches
have been shown to outperform supervised learning when
few labelled training examples are available. The additional
discrimination power of such methods could be undetected
by using only threshold independent metrics. To ensure that
improvements made by future methods are discernable, we
recommend using threshold dependent metrics such as the
F1 score.

3.2. Algorithm parameter selection

For all models, 10-fold cross-validation (see Hastie et al.,
2001) on the training set was used for selecting the SVM and
the GS kernel parameters. All the metric values reported in
the Results and discussion section were computed on the
(independent) testing set provided by the organisers of the
2012 MLI competition.

3.3. Advanced parameter tuning

In the cross-validation method, a single parameter is
chosen to produce a good predictor with a limited amount of
data. This parameter is estimated based on the ability of the
algorithm to yield an accurate predictor. However, with a
limited amount of data, the uncertainties in the estimations
tell us that predictors obtained by using other parameters
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values should also be considered. In this case, Bayesian
theory suggests to use a (probabilistic) combination of many
predictors obtained with different parameter values (Lacoste
et al., unpublished). Such a combination allows to take into
account the uncertainty on determining which predictor is
truly the most accurate. Elaborated repeated resampling
techniques allow to estimate the probability of each predictor
being the most accurate. These probabilities are then used
to weight the contribution of each predictor in the final
decision.

In the context of MLI, a preliminary version of this method
was used, yielding outstanding results for the HLA-B*07:02,
H2-Db and H2-Kb alleles. However, additional experiments
showed that this approach does not significantly improve the
AUC or F1 scores.

4. Results and discussion

4.1. Selecting a model for eluted peptide prediction

In this paper, we have presented two eluted peptide
prediction models: the one predictor approach (E vs BN) and
the two predictor approach (EB vs N + E vs B). In order to
determine which model is the most accurate, we computed
their AUC and F1 score on the testing set of each allele. The
results on all eight alleles are shown in Table 1. For the AUC
and F1 score results, we observe that the (EB vs N + E vs B)
approach outperforms the (E vs BN) one on six out of eight
alleles. Unfortunately, the number of alleles was insufficient
to compute p-values, therefore no statistical analysis of the
results was made. Nevertheless, the (EB vs N + E vs B)
method clearly promises better prediction accuracy than the
(E vs BN) method.

This result is interesting from a machine learning point of
view, since it indicates that it is better to handle the binding
affinity prediction task and the eluted peptide prediction task
separately.

Both methods have parameters that are tuned by cross-
validation to fit closely to the prediction task. Among the most
important parameters to tune, are those of the kernel function
which effectively define a specialized similarity function.
Generally, theses parameters vary greatly depending on the
learning task.

The two predictor approach (EB vs N + E vs B) was tuned
twice, once to distinguish binding from non-binding peptides,
Table 1
Comparison of the two eluted peptide prediction models. For each allele, the
best results are shown in bold. Alleles followed by a star symbol are those for
which our method performed the best in the MLI competition.

MHC allele AUC Fl score

E vs BN EB vs N + E vs B E vs BN EB vs N + E vs B

HLA-A*02:01 0.8573 0.8806 0.4114 0.4795
HLA-B*07:02⋆ 0.9157 0.9236 0.5644 0.5992
HLA-B*35:01 0.9187 0.9367 0.6720 0.7059
HLA-B*44:03 0.8178 0.7947 0.5833 0.5443
HLA-B*53:01⋆ 0.8401 0.8515 0.6368 0.5758
HLA-B*57:01 0.8017 0.8258 0.6623 0.6447
H2-Db⋆ 0.8614 0.8437 0.3125 0.3724
H2-Kb⋆ 0.8185 0.8251 0.3212 0.3421
Average 0.8539 0.8602 0.5205 0.5330
and a second time, to isolate eluted peptides. The optimal
parameters found for each task were considerably different.
This result was expected, since both tasks are significantly
different and, thus, require different similarity functions. We
believe that this is one of the main reasons why the two
predictor approach outperforms the single predictor approach.
In addition, note that the former exploits the structure of the
problem by taking into account that eluted peptides are also
binders.

Due to its superior accuracy, we have chosen to use the
(EB vs N + E vs B) method to elaborate our eluted peptide
prediction tool, MHC-NP. This tool is hosted by the Immune
Epitope Database (Peters et al., 2005) and publicly available
at http://tools.immuneepitope.org/mhcnp/.
4.2. Comparison to binding affinity prediction methods

The purpose of the 2012Machine Learning Competition in
Immunology was to assess the ability of computational
methods for predicting peptides naturally processed by the
MHC-I pathway. It is known that there exists a correlation
between the binding of peptides and their immunogenicity
(Toussaint and Kohlbacher, 2009). Therefore, strong binders
are more likely to be naturally processed by the MHC
pathway. For this reason, we have chosen to compare our
most accurate eluted peptide predictor, the (EB vs N + E vs
B) approach, to two state-of-the-art MHC-I binding affinity
prediction methods. The first method, called (EB vs N), is
inspired by the peptide–protein binding affinity work of
Giguère et al. (2013). Note that this method is equivalent to
performing the first prediction task of the (EB vs N + E vs B)
approach. This comparison allows to estimate the additional
discriminative power that follows from using a (E vs B)
predictor in combination with a binding affinity predictor.
For the sake of completeness, we also compare our approach to
the popular NetMHC-3.2 (Lundegaard et al., 2008), which was
used as a benchmark method in the 2012 MLI competition.

Table 2 shows AUC results on the testing sets for the three
methods. Our approach outperforms both the (EB vs N)
approach and NetMHC-3.2 on five out of eight alleles. Also,
MHC-NP achieves an average AUC of 0.8602, which is greater
Table 2
Comparison of the MHC-NP (EB vs N + E vs B) eluted peptide prediction
method and two binding affinity prediction methods using the area under
the ROC curve. For each allele, the best result is shown in bold. Alleles
followed by a star symbol are those for which our method performed the
best in the MLI competition.

MHC allele MHC-NP
(EB vs N + E vs B)

EB vs N NetMHC-3.2

HLA-A*02:01 0.8806 0.9078 0.9310
HLA-B*07:02⋆ 0.9236 0.9075 0.9042
HLA-B*35:01 0.9367 0.9307 0.9090
HLA-B*44:03 0.7947 0.7778 0.8104
HLA-B*53:01⋆ 0.8515 0.7817 0.6651
HLA-B*57:01 0.8258 0.8438 0.8181
H2-Db⋆ 0.8437 0.8031 0.7641
H2-Kb⋆ 0.8251 0.8106 0.8098
Average 0.8602 0.8454 0.8265

http://tools.immuneepitope.org/mhcnp/


Table 3
Comparison of the MHC-NP (EB vs N + E vs B) eluted peptide prediction
method and two binding affinity prediction methods using the F1 score. For
each allele, the best result is shown in bold. Alleles followed by a star symbol
are those for which our method performed the best in the MLI competition.

MHC allele MHC-NP
(EB vs N + E vs B)

EB vs N NetMHC-3.2

HLA-A*02:01 0.4795 0.4452 0.5833
HLA-B*07:02⋆ 0.5992 0.4791 0.5239
HLA-B*35:01 0.7059 0.7432 0.7417
HLA-B*44:03 0.5443 0.4655 0.4697
HLA-B*53:01⋆ 0.5758 0.5030 0.4568
HLA-B*57:01 0.6447 0.7085 0.3006
H2-Db⋆ 0.3724 0.3008 0.0833
H2-Kb⋆ 0.3421 0.3408 0.3000
Average 0.5330 0.4983 0.4324
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than both binding affinity prediction methods who respectively
obtained 0.8454 and 0.8265.

As seen in Table 3, our method outperforms the EB vs N
approach and NetMHC-3.2 on five out of eight alleles. Our
approach also achieved the best average F1 score: 0.5330, in
comparison to 0.4983 and 0.4324 respectively obtained by
the EB vs N and the NetMHC-3.2 method.

Considering our results, it is unclear why, for some alleles,
the simpler approach of predicting MHC–peptide binding
affinity outperforms the MHC-NP method at predicting eluted
peptides. Part of the 2012 MLI competition was to assess if the
latter taskwas learnable. Our results show that, formost alleles,
this task can be learned with good accuracy. The performance
of the NetMHC-3.2 tool for the HLA-A*02:01 allele and the
(EB vs N) approach for the HLA-B*35:01 and HLA-B*57:01
alleles could be attributed to noise in the naturally processed
peptides data.

Finally, Table 4 reports the sensitivity and specificity of
MHC-NP on all alleles. The proposed approach achieves an
average sensitivity of 0.4716 and an impressive average
specificity of 0.948. Recall that sensitivity and specificity
depend on a decision threshold. Considering the high
specificity and low sensitivity of MHC-NP, it is reasonable
to think that the decision threshold of MHC-NP could be
selected to allow a better specificity/sensitivity trade-off.
Given the AUC results reported in Table 2, such a threshold
clearly exists.
Table 4
Sensitivity and specificity of the MHC-NP (EB vs N + E vs B) method on all
alleles. Alleles followed by a star symbol are those for which our method
performed the best in the MLI competition.

MHC allele Sensitivity Specificity

HLA-A*02:01 0.5000 0.9589
HLA-B*07:02⋆ 0.5259 0.9805
HLA-B*35:01 0.5926 0.9795
HLA-B*44:03 0.4725 0.9618
HLA-B*53:01⋆ 0.5229 0.9149
HLA-B*57:01 0.6504 0.8091
H2-Db⋆ 0.2784 0.9868
H2-Kb⋆ 0.2301 0.9925
Average 0.4716 0.948
5. Conclusions

We proposed a newmethod, MHC-NP, for the prediction of
peptides naturally processed by theMHCpathway.We showed
that MHC-NP outperforms state-of-the-art approaches based
on MHC binding affinity. Moreover, the results support the
hypothesis that peptides that strongly bind the MHC molecule
have greater propensity of being naturally processed to the cell
surface. In absence of eluted peptide data, the prediction of
MHCbinding affinity remains a reasonable approach to identify
naturally processed peptides. Furthermore, the proposed
approach is amenable to be used in conjunction with
state-of-the-art pan-specific MHC binding tools to improve
its prediction accuracy. Finally, the approach could be further
improved by using additional data onmolecules that contribute
to the MHC pathway.
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