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Abstract— Recently, robotics has been seen as a key solution
to improve the quality of life of amputees. In order to create
smarter robotic prosthetic devices to be used in an everyday
context, one must be able to interface them seamlessly with the
end-user in an inexpensive, yet reliable way. In this paper, we
are looking at guiding a robotic device by detecting gestures
through measurement of the electrical activity of muscles cap-
tured by surface electromyography (sEMG). Reliable sEMG-
based gesture classifiers for end-users are challenging to design,
as they must be extremely robust to signal drift, muscle fatigue
and small electrode displacement without the need for constant
recalibration. In spite of extensive research, sophisticated sEMG
classifiers for prostheses guidance are not yet widely used,
as systems often fail to solve these issues simultaneously. We
propose to address these problems by employing Convolutional
Neural Networks. Specifically as a first step, we demonstrate
their viability to the problem of gesture recognition for a low-
cost, low-sampling rate (200Hz) consumer-grade, 8-channel, dry
electrodes sEMG device called Myo armband (Thalmic Labs) on
able-bodied subjects. To this effect, we assessed the robustness
of this machine learning oriented approach by classifying a
combination of 7 hand/wrist gestures with an accuracy of
∼97.9% in real-time, over a period of 6 consecutive days with no
recalibration. In addition, we used the classifier (in conjunction
with orientation data) to guide a 6DoF robotic arm, using the
armband with the same speed and precision as with a joystick.
We also show that the classifier is able to generalize to different
users by testing it on 18 participants.

I. INTRODUCTION

The commoditization of robots and sensors creates new
opportunities to integrate robotics into day-to-day life. In
particular, some of these developments aim at easing or
aiding in common everyday tasks. For those who depend
on prostheses and assistive robots, such developments can
significantly improve their quality of life [1], [2]. In order to
leverage the full potential of robotic devices in this context,
it is essential to develop novel and intuitive ways to control
them. An ideal interface would also be as intuitive and
inconspicuous as possible, to provide a seamless experience
to non-expert users.

One possible way to achieve such a natural interface is
through Surface electromyography (sEMG). It is a non-
invasive technique, extensively adopted in clinical and re-
search works related to muscular activities. sEMG signals are
non-stationary, and represent the sum of subcutaneous motor
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unit action potentials generated during a muscular contrac-
tion [3]. The use of sEMG signals, combined with pattern
recognition systems, has been proposed in the literature as
an effective avenue to provide a more intuitive control of
devices such as prosthesis or assistive robots [3], [4]. Studies
in this topic mainly employ several sEMG electrodes placed
on specified muscles to perform forearm pattern recognition.
Furthermore, when using gel-based electrodes, the user’s
skin has to be shaved and washed to obtain optimal contact
between the electrodes and the skin. This severely limits the
practicability of such systems by making the preparation step
a long, delicate and complex process.

In order to be able to use sEMG signals for robotic
guidance, pattern recognition must be performed to iden-
tify a user’s gesture. The two main components of pat-
tern recognition are feature extraction and classification.
For sEMG, features extracted from the time-domain have
been extensively studied [5], [6] (e.g. Mean Absolute Value,
Zero Crossing, Willison amplitude and Integrated EMG).
However, as mentioned in [7], if temporal features are fast
and easy to implement, they are sensitive to frequent ampli-
tude fluctuations compared to features from the frequency-
domain (e.g. Fourier Transform, Median Frequency, Mean
Frequency [8], [6]). Features in the time-frequency domain
(e.g. spectrograms, wavelet transform, wavelet packet trans-
form) provide a richer way to extract pattern information [9].
For classification, many methods (linear, non-linear, super-
vised or unsupervised) have been employed to estimate
unknown patterns from a set of features [3], [4]. The most
common methods are the linear discriminant analysis (LDA)
and artificial neural networks (ANN). Even if each classi-
fier presents its own advantages, they remain too sensitive
to electrode displacement and positioning when used with
sEMG electrodes placed on specific muscles [10].

In the case of a prosthesis, the guidance system should
ideally be small, inexpensive, lightweight, require minimal
preparation and be robust to a small displacement of the
electrodes while still achieving excellent classification per-
formance. Dry electrodes should also be preferred over gel-
based ones, as they are inherently more convenient to use.
However, they are less accurate and less robust to motion
artifact, compared to gel-based ones [11].

The work presented in this paper addresses these severe
limitations while still achieving state of the art results. Our
approach is based on employing convolutional neural net-
works (CNN) to perform the classification of spectrograms
of the sEMG signals, in order to identify a number of



gestures. One of the contributions of this work is thus the
use of a CNN to classify the very noisy sEMG data [12].
Indeed although they have been used before in speech
recognition [13] and EEG classification [14], we believe this
is the first time that they are used to classify sEMG data for
gesture recognition. Importantly, the use of CNNs shifts the
focus from feature engineering to feature learning. Indeed,
because of the nature of CNNs, features are automatically
learned via the convolutional layers. Those features are then
transferred to fully connected layers that associate sEMG
signals to specified gestures.

Although deep networks are often seen as computationally
expensive, recent development in hardware for deep learning
makes complex algorithms implementation in embedded
systems a reality [15]. Additionally, dedicated deep learning
materials such as Eyeriss [16] are able to run CNNs with up
to 60 millions parameters at 35 fps using only 278 mW.
Furthermore, those very-low power systems only need to
handle the inference step since training can be done on a
desktop and the weights of the parameters simply sent via
bluetooth once the optimization is completed. Finally, using
network pruning, one can achieve a compression rate over
10x [17] which significantly reduces both inference time and
memory space requirement of the hardware.

Once the classifier is able to reliably identify these ges-
tures, one can easily create a guiding system by associating
a particular robot motion primitive to a gesture. To obtain
the sEMG data in the least possible intrusive way, a Myo
armband by Thalmic Labs1 can be used. This consumer-
grade device includes a 9-degree-of-freedom (DoF) Inertial
Measurement Unit (IMU) and 8 dry surface electromyogram
sensors. The proposed system use both the IMU and sEMG
data for the guidance of the robotic arm.

The rest of the paper goes as follow. First, Section II pro-
vides an overview of our guidance system. The architecture
of our CNN classifier is then described in Section III, along
with the spectrogram features that are employed. The ability
of the classifier to generalize well to different users is show-
cased in Section IV-A. We then demonstrate the precision
and the robustness of this guidance system by performing
precise and complex tasks in a speed test in Section IV-B.
Finally, Section IV-C establishes the long term stability of
the classifier and its robustness to muscle fatigue by testing
it over two periods of six consecutive days on a healthy
subject. For each period, the emplacement of the electrodes
on the forearm were not marked and no recalibration was
performed after the initial training. This naturally led to
small displacements of the electrodes between each recording
session, which the classifier was not specifically trained to
resist but was nonetheless robust to.

II. PROPOSED GUIDANCE SYSTEM OVERVIEW

The description of the robotic arm, the Myo and the
gestures used in this work are given in this Section. The
classifier itself is detailed in Section III.

1https://www.myo.com/

A. Myo Armband

In 2014, the Myo armband was released at a purchase
cost of 200 $. As stated previously, it contains a 9DoF
IMU and 8 dry surface electromyogram sensors. One of
the main advantages of the Myo is that it can simply be
slipped on the arm to read sEMG signals with no preparation.
The sEMG data from the Myo can be visualized in [18].
The Myo armband provides a sEMG sampling frequency
(fs) of 200 Hz per channel (a fs of at least 1 kHz is
normally preferred to address sEMG signals lying within 5-
450 Hz [19]). Electrode placement was dependent on the size
of the subject’s forearm due to the minimum circumference
of the Myo (19.05 cm). Additionally, no shaving of hair or
skin-cleaning were performed for this study as these were
judged too constraining for a potential end-user. Note that
this generates extra noise that can nevertheless be handled
by our machine learning approach.

B. JACO guidance using a Myo armband

The JACO arm by Kinova 2 is a 6DoF robotic arm that
is usually manually operated using a 7-button joystick. The
coordinate system used by the robot is Euler X-Y-Z. The
user can navigate through 3 different modes to access the
full motion of the robotic arm: 1) translate (Move the arm
along X-Y-Z axes), 2) rotate (Rotation of the robotic hand
around the X-Y-Z axes) and 3) grip (open-closing the hand).

The different gestures employed to generate sEMG pat-
terns are explained in Section II-C and replace the rotation
around the X-Y axis and the grip mode. The rotation around
the Z axis (corresponding to the roll motion on JACO’s hand)
is not considered in this work since it was deemed not useful
in the experiments described in Section IV.

The translate mode is mapped to the orientation of the
armband which is obtained using the IMU included inside
the Myo. The yaw corresponding to the X-axis, the pitch
to the Y-axis and the roll to the Z-axis. Furthermore, for
the translate mode, the mapping is proportional to the angle
between the orientation of the forearm and a horizontal
reference orientation corresponding to a 90 degrees flexion
of the elbow. Thus, the larger the angle between the neutral
configuration of the forearm and the current orientation of
the Myo, the faster JACO will move.

JACO also includes a spasm filter which is used solely for
the third task in Section IV-A.3 at the lowest possible setting.
The spasm filter limits the acceleration of JACO, while not
affecting its deceleration speed. It is important to note that
opening and closing the hand is not affected by this filter.

When guiding JACO with the Myo, a system of movement
priority is established. Translation along the X and Y axes
have the highest priority. If the arm of the user is within
the resting position range with respect to the pitch and
yaw, then the user can perform a translation of the robotic
arm along the Z-axis by rotating his wrist (pronation and
supination). Finally, if the roll is also within its neutral
range, the classifier output is used to guide the robot. This

2http://kinovarobotics.com/



priority list is necessary because inexperienced users, have a
tendency to rotate their wrist involuntarily when moving their
arm. Furthermore the classifier has a lower priority since the
muscle activity generated by the rotation of the wrist, is not
an activity the classifier is trained to recognize and therefore
the output during this movement is not reliable.

C. Description of the gestures

Since the final purpose of this experiment is to guide
the robotic arm with the Myo armband, seven different
hand/wrist gestures are required. The classes are: neutral,
hand open, hand close, wrist flexion, wrist extension, radial
deviation and ulnar deviation. Fig. 1 shows the different
gestures as well as the Myo and JACO. These gestures
are chosen because they can intuitively be mapped to the
rotate and grip mode of the robotic arm. The gestures and
their corresponding action of the robotic arm, are as follows:
opening and closing of the hand to represent the opening and
closing of the robotic hand, the wrist flexion and extension
correspond to moving the joystick to the left and right in the
rotate mode. Finally, the radial and ulnar deviation emulate
pushing the joystick to the front and the back respectively.

Fig. 1. The 7 gestures considered in this work. The Myo armband (right) is
connected through bluetooth to the laptop. The computer, after data analysis,
transfer the command to JACO (left) in real-time via a USB connection.

III. CLASSIFIER OVERVIEW

Processing of the sEMG data signal was necessary to be
able to recognize the different hand/wrist movements of the
user. In this section, the different steps performed during
an online classification are exposed. We first describe how
the data is separated into time windows, then pre-processed
using consecutive fast Fourier transform (FFT) for forming
one spectrogram per channel, and finally fed to a CNN to
predict the current hand/wrist movement.

A. Time-window

As stated previously, the Myo armband includes 8 sEMG
channels, each sampled at 200 Hz. For closed loop and online
operation, latency is an important parameter to consider.
In [20], it was first recommended that the time-window
between two predictions be equal to or less than 300 ms,
while in [21] it was found that ideally, the latency should be
between 100 and 125 ms. However, in [22] it was reported
that the performance of the classifier should take priority
over speed. In our system, we opted for a maximal latency
of 300 ms, in order to accumulate a sufficient number of

samples with the low fs of the Myo, and thus increase clas-
sification performance. Considering that the time to process
and classify one gesture’s sEMG-pattern window of ∼300 ms
takes on average ∼15 ms on our hardware (laptop with an
NVIDIA GeForce GT 555M), we used windows of 285 ms.
This corresponds to 57 data points per channel per example.
Overall, this kept the data capture and processing time below
our target latency of 300 ms.

B. Preprocessing

Spectrograms are calculated for each sEMG channel of
57 samples using windows of 30 points for FFT and an
overlap of 21. Based on these parameters, 4 FFT will be
contained in the spectrograms. This results in a spectrogram
matrix of 16 by 4, with a frequency step of 6.67 Hz. Note
that a Hamming window is used to avoid frequency leakage.
The spectrograms are calculated using Scipy implementation
in Python [23]. The first row of the spectrogram array is
removed because it is out of the useful frequency range of
the sEMG signal (Section II-A) The final spectrograms have
a frequency range of 6.67 to 100 Hz.

C. Classification Algorithm

We tried most of the state of the art machine learning
algorithms (e.g. Support vector machine, Adaboost, Random
Forest, Deep neural network). Considering that a CNN
achieved by far the best results, it was selected as the
classifier for our system. Its architecture is described below.

1) Description: The classification algorithm consists of
a two-staged CNN, implemented using the python library
Theano [24], [25]. This library allows the CNN to run on
a GPU, thereby accelerating the training and prediction.
The first stage is used to differentiate between the neutral
class and the others. If the former is not detected, the
algorithm proceeds to Stage 2, which differentiates between
the remaining six gestures. Justification for this separation
is at the bottom of this Description. The architecture of the
CNN remains the same in both stages, except for the output
layer which contains two and six neurons respectively. The
architecture of stage 2 (containing ∼3.6 millions parameters)
was selected as usual in deep learning by trial and error using
previously published architecture as inspiration (mainly [26])
and is presented in Fig. 2.

We use ADADELTA [27] for the optimization of the CNN
weights. The hyperbolic tangent (tanh) is used as the non-
linear activation function. The rectified linear Unit (ReLU)
has been considered mainly for speed reasons [28]. However
ReLU was not retained because even though each iteration
experienced a slight speed boost as expected, the CNN
tended to converge faster with tanh and the accuracy in
validation was similar between the two. The sigmoid function
was also considered, but performed poorly for this task
compared to both tanh and ReLU. Additionally, the proposed
system uses the dropout approach [29] to prevent overfitting.
For the convolutions layers, the dropout is set at 25%. For
the two fully connected layers before merging it is at 50%.
Finally, the dropout of the last two layers is set at 75%.



In the implementation of Stage 2, we first go through
a rescaling step. First, considering the eight spectrograms
at time T as a 3D matrix of shape 8x15x4, we reshape
it into a 480x1 vector xT . Then rescaling is performed
with xi

T

norm(xT ) , where xi
T is the value in position i of

the vector xT and norm is the L2 norm. Performing the
rescaling on the concatenated spectrograms ensures that their
relative intensities are taken into account. After rescaling,
the eight spectrograms are reshaped back into their 15x4
format, feeding the two-stage CNN with 2D images. This
reshaping preserves important correlations between channels
and within spectrograms. The L2 norm achieves a trade-off
between a quasi-constant power spectrum (within a factor
of L2) and putting more weight on frequencies with higher
power spectrum, an approach similar to extracting peaks in a
power spectrum for time-series classification [30]. This last
effect is less noticeable when using the L1 norm instead of
the L2 norm. Furthermore, we observed faster convergence
rate of the CNN using the L2 norm over the L1 norm. Note
that when using a single-stage approach with the rescaling,
the performances of the classifier degrades significantly. We
attribute this to the fact that the rescaling step tends to
normalize the energy level of incoming spectrograms, before
they are fed to the CNN. Since discriminating between
a neutral gestures (homogeneously low energy) and the
other gestures (high muscle activity) probably relies on this
energy level, this would explain the poor performance of
this rescaled, single-stage CNN approach. The two-staged
CNN approach that we have adopted sidesteps this issue
completely, by performing rescaling only after a gesture has
been deemed as non-neutral.

2) Training and validation: In the training phase, the
process of collecting labeled data for the CNN required the
user to hold each gestures for 5 s. These labeled intervals
are then divided into time-window of 285 ms, as described
in Section III-A. To see more accurately variation within the
same class, each window overlapped the previous one by
265 ms. This process is repeated three times, yielding 15 s
of data per class. We take three trials of 5 s per gesture
as opposed to one trial of 15 s to get more variation on the
same gesture. Indeed, a user cannot perform exactly the same
motion with the same strength when asked to do the same
gesture twice. This also follows the recommendation made
by [31] of varying strength recording for the same gesture.
Validation data is created in a fourth independent run (5 s
per gestures) in an identical manner.

IV. EXPERIMENTAL RESULTS

Experiments were conducted to evaluate the performance
of the CNN classifier (described in Section III) on three
main aspects that correspond to Section IV-A, IV-B and IV-C
respectively. The experiments of Section IV-A assessed the
ability of the classifier to generalize to different individuals.
Then, experiments in Section IV-B were used to compare
the task completion time between an expert in guiding the
robot with the joystick against one well-versed with our
Myo interface. Finally, the classifier’s robustness to sEMG

signal drift [32], small electrode displacement and short
term muscle fatigue is evaluated in Section IV-C. All results
reported here were based on the zero-one loss accuracy.
Meaning that a classification is considered successful only if
the predicted gesture is exactly the one being made.

A. Generalization Experiment

We tested our system on 18 (11 men and 7 women)
healthy subjects aged between 23 and 29 years old. The
Myo armband was placed at a single but different location
on the forearm, depending on the user. Indeed, since the
armband minimum circumference is 19.05 cm and the test
subjects had a forearm circumference between 15.5 and
24.0 cm (measured 5 cm above the wrist), it would have been
difficult to obtain the same forearm sensor placement for
each subject. Therefore, we set the armband at the minimum
circumference and simply slid it up until the forearm’s
circumference matched the armband’s one. The placement
of the armband was thus directly dependent on the subject’s
forearm circumference. Consequently, it is important that the
performance of our approach be as independent as possible
from the placement of the electrodes.

Training of the CNN was realized as described in Sec-
tion III-C.2. The average accuracy in validation for the
participants was 100% for the first stage and 97.71% for the
second stage. The participants were then asked to perform
three tasks: (1) gesture accuracy, (2) cube holding and (3)
picking an object to place it in a specified zone. Details on
these tasks are presented below.

1) Gesture accuracy test (Task 1): To evaluate the ac-
curacy of the classifier during short-term muscle fatigue, the
participants were asked to hold one of seven gestures, chosen
randomly, for 10 s. No rest was given between each gesture.
The test length was 5 min, yielding 30 trial-gestures. The
participants were noted on the amount of trial-gestures that
they succeeded and given a score out of 30. A gesture was
considered a success if no more than two false consecutive
or no more than four non-consecutive miss-classifications
occurred during a 10 s period. Transitioning between gestures
was not considered in this task. The average success rate was
93.14% over all participants.

2) Cube holding (Task 2): For the guidance of a robotic
arm, the negative impact of miss-classification highly de-
pends on the nature of the error. Indeed, if the user wants
to close his hand and the classifier interpreted it as a neutral
state, it is easy for the user to perform the gesture again.
On the contrary, if the user wants to be in a resting position
while the robotic arm is holding a glass of water and the
resulting classification is hand open, serious consequences
can be envisioned. The second task thus tested the capability
of a user to hold an object in the robotic hand while making
different gestures. The setup of this task was identical to
Section IV-A.1 except that the gesture open hand was not
requested and that the duration was 120 s. All participant
successfully held the cube for 120 s during this task.

3) Picking and placing cube (Task 3): In the final task,
the participants were asked to pick a cube with the robotic



Fig. 2. Stage-2 architecture. Each channel is considered independently at first, going through the convolutional network for feature extraction and then
two fully connected layers. The output from all channels on the layer F7 are then connected together on layer F8.

arm and put it in a specified location. The participants were
first asked to perform the task with the normal guidance
system for the robotic arm (joystick). They were timed for
both picking and dropping the cube at the specified place.
They then performed the same task with the Myo as the
guidance system. For both tasks, they had 10 min of training
prior to performing their task. It is important to note that
the results that follow only aim at providing an order of
magnitude for the time required to complete the task. Indeed,
since the participants always started with the joystick, this
gives an unfair advantage to the Myo armband system. The
task is thus not suited to truly compare them in terms of
speed, but simply to show that the classifier is sufficiently
accurate to perform similarly to the joystick. The average
time to perform the task with the joystick was: 1 min 45 s
and with the Myo armband: 1 min 33 s.

4) Results and discussions of the three tasks: None of
the participants had experience with sEMG-based classifiers
or guidance of a robotic arm and had no known physical
disabilities. Table I presents the general information on the
participants as well as the results for the first two tasks.
The circumference of the forearm was measured 5 cm above
the wrist. The accuracy reported in Table I is the validation
accuracy (Section III-C.2) for the two stages of the classifier.
We can immediately see from the validation accuracy that the
classifier is always able to learn to distinguish between the
7 gestures. Participants generally achieved high performance
on Task 1 and all were perfect on Task 2.

TABLE I
PARTICIPANTS GENERAL INFORMATION AND FIRST TWO TASKS RESULTS

Femme Homme
Moyenne E.T. Moyenne E.T.

Age (Années) 24.29 1.67 24.55 2.27
Avant-bras

circonférence (cm) 17.0 1.36 19.73 2.85

stage 1
précision en validation 100.00% 0.00% 100.00% 0.00%

stage 2
précision en validation 97.61% 1.14% 97.76% 2.93%

Task 1 93.81% 5.17% 92.72% 6.49%
Task 2 (s) 120 0.0 120 0.0

Fig. 3 presents the time taken by the participant to
complete Task 3. It is important to note that one of the
participants did not complete the Myo portion of task 3.

The reason is that the classifier performed too poorly for the
precise manipulation required from Task 3. The participant
data from the other tasks are included in the statistics
(76.66% for task 1 and 120 s for Task 2).

Fig. 3. Box plot of the time taken to complete task 3 (picking and placing
the cube). The doted line represent the mean of the distribution.

For inexperienced users, Fig. 3 shows that the time needed
to complete task 3 with the joystick and the Myo are on
the same order of magnitude. We cannot conclude that our
guidance scheme is more intuitive because the time differ-
ence is not statistically significant (ANOVA p-value>0.05).
We can however conclude that our system is robust enough
to reliably guide the robotic arm in precise tasks.

B. Speed test for a complex task

We specifically designed a speed challenge to evaluate
the usefulness of the classifier in an online situation and
to provide a time comparison between the joystick and the
Myo. The task consisted in picking and placing three cubes
consecutively, in a similar manner as described in Section IV-
A.3. The joystick times were achieved by an expert in
guidance of JACO. The expert had no physical disability.
The challenge was performed three times for each guiding
scheme. The reported results are the average over three runs.
Fig. 4 compares each sub-task of the challenge (picking and
dropping the three cubes). A video accompanying this article
shows the task being performed with the Myo. It should be
noted that the first cube grabbed and then dropped correspond
exactly to task 3 as described in Section IV-A.3.

C. Classifier stability

In order to assess the stability of the classifier, a set up
similar to the one described in Section IV-A.1 was used.



Fig. 4. Average time taken to complete each section of the speed challenge.
Both the Myo and the joystick performed similarly, with the total average
difference being less than 4 s in favor of the joystick.

The classifier was first trained on a subject at time T=0. To
assess the accuracy of the classifier, the test subject had to
hold a random gesture for 10 s was repeated for a full 5 min,
without rest. The test was conducted at least twice a day for
six consecutive days. No re-training was done after T=0 and
the armband was approximately at the same location on the
forearm for each experiment (no marking to guide the user).

The accuracy was calculated by comparing the predicted
gesture to the one requested by the computer. This however
added errors well above the accuracy found when guiding
the robot in real-time. Indeed, the time needed to read and
start reacting to new instructions from the computer are
considered errors in this setup. This is not a factor in a
realistic guidance setting, where it is the user who decides
when and which gesture to use. To mitigate this, we present
two sets of results named : transition and no transition ex-
periment. The first one does not try to alleviate the problems
previously mentioned. The second simply does not consider
the first 1.2 s after a change of gesture. The purpose of
this is to remove the reaction-time, from the moment the
subject receives the cue till the action is performed. Fig. 5
clearly shows that only a small performance degradation can
be observed 6 days after training the classifier.

The two dotted lines of Fig 5 correspond to the linear
regression lines. The first data point (at 1 hour) was not
considered for the regression as it appears to be an outlier
that would unjustifiably bias the results in favor of our
proposed method. The poor performance of the first mea-
surement, compared to the others, can be explained by the
fact that the subject is still learning the decision function
of the classifier. Another 6-day trial with a new classifier
was run which yielded very similar results. Due to space
consideration, they are not reported here. The experiment
shows that our classifier is robust to small physical variations
such as impedance of the skin changes from day to day and
electrode placement inconsistency, muscle activity change,
etc. In fact, the classifier shown in the video and the results
for the Myo presented in Section IV-B were achieved using
a classifier that was trained 12 days prior to the speed
challenge. Showing that the same classifier can be used
extremely efficiently even several days after training.

To assess if short-term muscle fatigue has a significant

Fig. 5. Average accuracy of the first 6-day trials. The blue hexagons
represent the accuracy over the complete 5- min period at different time
after the training of the classifier. The orange stars is the accuracy over the
5- min period when omitting the first 1.2 s after each new gesture. The blue
and orange doted line come from the linear regression of the blue hexagons
and orange stars data point respectively. The fact that the accuracy is almost
constant through the 6-day period indicate that the classifier is robust to
long-term use.

impact on the accuracy of the classifier, we examined its
accuracy in 10 s intervals for a total of 5 min. We used the
data obtained from the two 6-day trials, where a new gesture
was requested every 10 s, yielding a total of 30 gestures over
the 5 min period. Then the average accuracy for every 10 s
gesture, over all the two periods of six days, was combined.
This enabled a clear view of any possible degradation in
the accuracy, as time elapsed in the 5 min sequence. It is
clear from Fig. 6 that muscle fatigue did not degrade the
performance of the classifier in any noticeable way.

Fig. 6. Average accuracy over 5 min for the two 6-day trials. See Fig. 5
for the description of the dotted lines, blue hexagons and orange stars. The
fact that the accuracy does not change over time shows that muscle fatigue
is probably not adversely affecting our classifier.

The proposed classifier is thus not only accurate enough
to perform complex and precise tasks, but is also robust to
short term muscle fatigue, small displacement of electrodes
and long term use without the need for recalibration. The
average accuracy over the two 6-day trial is 97.9%.

V. CONCLUSION

In this work, a Myo armband was used to guide a robotic
arm. The use of the armband offers several advantages for
the intended users (inexpensive, no preparation time, easy
to use). However the efficiency of the armband comes at
the cost of quantity and quality of information. One of
the major accomplishments in this paper has been to show



that one can compensate for this lack of data quality with
suitable machine learning approaches. Using the specified
CNN architecture with spectrograms as input, our system
was able to achieve state of the art results and obtain
precise guidance of a 6DoF robotic arm using sEMG and
orientation data that rivals the guidance with the joystick.
The efficacy of the classifier was established when facing
short-term muscle fatigue and long-term use achieving on
average 97.9% during the two 6-day periods. The system
was also shown to generalize effortlessly to different users.

Future work will focus on three main aspects. First,
optimizing the CNN architecture in term of parameters and
pruning it will allow both faster training and inference from
the system. The presented approach will thus be more easily
suitable for very low-power embedded hardware. Secondly,
the data collected from the participants of this study will
be used to build a classifier that will require significantly
less training data than presently required for a new user.
To achieve this we intend to make use of training based
on domain-adaptation techniques, which recover suitable
information from one task and applies it to a similar one
(new user). This can be used in a deep learning setting [33].
Finally, the classifier will be tested on upper limb amputees.
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