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Abstract— In recent years, gesture-based interfaces have been
explored in order to control robots in non-traditional ways.
These require the use of systems that are able to track human
body movements in 3D space. Deploying Mo-cap or camera
systems to perform this tracking tend to be costly, intrusive,
or require a clear line of sight, making them ill-adapted
for artistic performances. In this paper, we explore the use
of consumer-grade armbands (Myo armband) which capture
orientation information (via an inertial measurement unit) and
muscle activity (via electromyography) to ultimately guide a
robotic device during live performances. To compensate for
the drop in information quality, our approach rely heavily
on machine learning and leverage the multimodality of the
sensors. In order to speed-up classification, dimensionality
reduction was performed automatically via a method based
on Random Forests (RF). Online classification results achieved
88% accuracy over nine movements created by a dancer during
a live performance, demonstrating the viability of our approach.
The nine movements are then grouped into three semantically-
meaningful moods by the dancer for the purpose of an artistic
performance achieving 94% accuracy in real-time. We believe
that our technique opens the door to aesthetically-pleasing
sequences of body motions as gestural interface, instead of
traditional static arm poses.

I. INTRODUCTION

As robots are increasingly present in daily life, both in the
industrial and private spheres - their means of interaction
with humans is of growing significance. Remote control
devices (joysticks, computer-based control application, smart
phones, etc.) require a user to consciously transcript their
commands into specific actions on the apparatus. For many
contexts, this may be a distracting constraint or require too
much time to learn for a user. This work was conducted for
a specific category of users: artists. A wealth of performers
have been engaging in robotic performances for more than
fifty years now [1], [2]. Artists have always been explorers
of human feelings and perception [3]. As for many media or
digital arts performances, audiences gathering around such
pieces are usually aware of what they are going to see, which
mean that they are more prepared to question the work and
think on it than general audiences. In this context, the artist,
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for instance a dancer, cannot effectively focus on delivering
a performance while issuing non-intuitive commands to a
robotic device. Furthermore, the guidance of the robot has
to be done in an inconspicuous manner to the spectator, so as
not to become a technical demonstration. Consequently, more
intuitive devices that could be integrated seamlessly into an
artistic performance have to be developed. For instance, the
pitch of the human voice has been employed to control the
motion of cubic blimps [4], fitting the aesthetic context of a
singing/dancing performance (Fig. 1).

Fig. 1. Dancer Ghyslaine Doté with a cubic blimps flying robot in a perfor-
mance in São Paulo, 2012. Employing large robotic blimps during artistic
performances severely reduce the applicability of line-of-sight sensors such
as Mo-cap and cameras.

The last decade of research has led to a number of original
ways to interpret human behavior such as visual movement
detection, speech recognition, haptic devices (force sensing),
smart watches, etc [5]. Interfacing these with robots, in order
to intuitively control them, remains a challenge that is being
addressed in the active field of Natural User Interface [6], [7].
However, even Natural User Interfaces often constrain the
creativity when technically too limited for the artist intent [8].
Indeed, extracting pre-processed interaction actions from
features of any data is less flexible to the artist uniqueness
and his fatigue throughout a performance [9]. Thus this paper



presents a new take on employing human body movements to
enable performers to seamlessly control robots the projected
emotions of their body. To that effect, experiments including
two professional dancers were conducted with the goal of
assessing the accuracy of an adaptive lightweight system for
dance recognition.

In gesture recognition, the focus is on accurately detecting
a number of simple gestures within a small, pre-determined
workspace. For example, the Leap Motion ControllerTM can
track and recognize hand and finger gestures directly in front
of a computer screen [10]. The well-known KinectTM sys-
tems can perform hand and arm gesture recognition [11] with
some limited finger movement tracking. It has successfully
been used to command motion primitives on quadrotors [7].
For wider workspaces and movements, a motion capture
system such as the ViconTM is better suited. It is how-
ever expensive, and often cumbersome, to set up unsightly
cameras in the context of performing arts. Some research
groups have tackled the problem of whole body recognition
in larger space through the use of stereo-camera rigs [12]
or monocular camera systems for low resolution gestures at
long range [13]. All of these systems pose the problem of
necessitating an unobstructed line of sight, which can be hard
to obtain, notably in street performance settings.

On the other hand, EMGs give information on the wearer’s
motions and gestures from a more intimate, proprioceptive
perception instead of an absolute external recognition. Fur-
thermore, it removes the requirement of clear line of sight.
However, these signals are challenging to interpret.

Attempts in the art domain to employ these devices have
already been made. Artists are questioning and exploring
every possible mean to interface their body with our world so
as to render and create emotions. The German group Palin-
drome utilized EMG for visual amplification of a dancer’s
movements [14]. Bill Vorn from Concordia University in
Canada created the Grace State Machine, a parallel platform
mechanism stacked in columns moving according to the
analog biometrics of a dancer, among which were EMG
sensors.

EMGs are well known in medical applications for di-
agnostics, and also interfacing with prosthetic devices and
wheelchairs. For the latter, neural and Bayesian networks
have been successfully applied to classify hand gestures [15],
[16]. For a neural network, a solution to the time-varying
factor of the EMGs was proposed [17]. However, these al-
gorithms require very large datasets and powerful processing
for training. For a live performance with choreographers,
the classifier must be trained within minutes on a standard
computer to allow for rapid experimentation and exploration
of ad-hoc gestural interfaces. Faster algorithm such as Ran-
dom Forest were also explored, but only in the context of
precise grasping tasks [18]. The unique context (dance and
choreography) of this study is explained in the next section.

Because no currently available system meet the require-
ments for a live adaptive mapping of body movement to
control a mechanic device, this paper introduce a fully
tested solution. Its main contribution is to provide the user

with a fast live training machine, lightweight, making the
interpretation of dancers moods easy and flexible.

II. CONTEXT OF THE PROJECT: DANCE AND
CHOREOGRAPHY

Human body language is complex and meaningful. In
robotic applications, the focus is most often on simple
gesture recognition [19]. However, whole body motion can
bring significantly more information, such as intention and
mood. Dance is an active and conscious activity playing on
the potential of human body motion. Dancers and choreog-
raphers are trained by profession to identify the connections
between body movements and its mapping to the audience’s
emotions. Without this automatic understanding and innate
emotional encyclopedia, this ability is impossible to learn
through a methodical approach. Thus, the designation of
body movements and their emotional association should
primarily be driven by the dancers and choreographers. With
such knowledge, it is possible to design a system reacting to
perceived emotions by categorizing the body movements.

Central to this work, the concept of a dance mood is
taken from the choreography discipline. Choreographic the-
ory identifies four key elements in dance: design, dynamics,
rhythm and form [20]. Dances can be analyzed and designed
in terms of these basic elements to generate moods. Thus
moods are clusters of dance movements, arbitrarily defined
by a dancer or a choreographer, based on the perceived
emotion that they each create. The final hypothesis of our
classifier is that it can be trained on those groups. Since
moods are specific to a given state of the dancer (psychologi-
cal state, social context, creation environment), it is complex
to obtain large number of samples and thus limit the potential
training algorithms fit for moods recognition.

To capture the dancer’s movement in a non-obtrusive
manner, the device must be small, lightweight, wireless and
robust. Since EMG signals alone are complex to classify,
the ideal device should include extra sensing modalities.
An inertial measurement unit (IMU) is particularly well
suited for such requirement. In 2014, an accessible and
powerful wireless gesture control armband, called the Myo1,
was released. It includes a nine degree-of-freedom IMU
as well as eight electromyogram sensors (EMG) disposed
symmetrically around the forearm.

Two experiments involving two dancers were conducted
and will be detailed in Section III-A and Section IV re-
spectively. For the first experiment, to achieve a robust and
authentic feeling of interaction between a robot and a per-
former, as well as unlocking the full creative potential of the
dancers equipped with the Myo, an initial step of babbling is
done. During babbling, information collected from the Myo
is directly shown to the dancer by feeding the signal into
motorized light projectors. This grants the performer freedom
to improvise complex, aesthetically-pleasing choreographies
that are still potentially discernible without the need of deep
understanding of the device’s sensibilities. The frequency of

1https://www.thalmic.com/



the armband for this first experiment was limited (10 Hz) to
emulate multiples dancers performing simultaneously which
would severely limits the amount of data per performer
that a single system could handle. The second was a live
classification using two Myo sensors at maximum frequency
(50Hz for the IMU and 200Hz for the EMG). The first Myo
on the forearm sent EMG and IMU data while the second on
the calf only provided IMU data (hardware restriction from
employing two Myo simultaneously). In each experiment,
the artist created a new movement lexicon without any inputs
from the researchers (13 movements for the first, 9 for the
second), from which improvised seances (or performances)
were produced.
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Fig. 2. Example of signals for the EMG and the IMU of the Myo armband,
for four different dance movements. Vertical red lines indicate the transition
between two movements. The goal of our system is to identify automatically
these four movements.

III. OVERALL DESCRIPTION

A key component of this work is the use of machine learn-
ing to recognize each movement from the signals captured
by the Myo armband. Employing these machine learning
techniques allows the system to be robust to uncertainties
and noise. Fig. 2 shows a number of such Myo signals
displayed at 10Hz, for four different dance movements.
Several classifiers were tested in order to select the one
achieving the best accuracy while being fast enough to be
employed in real-time. The four classifiers were AdaBoost,
SVM-RBF, SVM-Linear and Random Forest (RF). They are
all well known state-of-the-art learning algorithms.

The rest of this section discusses the created dataset, the
principal features used, the selection of hyper-parameters for
the various classifiers and how to extract the most meaningful
features.

A. Dataset building: Myo low sampling frequency with feed-
back

For the initial babbling step the dancer was assisted
by a choreographer, essentially to provide insight on the

perception of her movements from an external point of view.
In the end, a first lexicon of 13 moods were created during

this experiment. Following this, the dancer performed five
improvised performances of three minutes each comprised
of a combination of moods from this lexicon which were
recorded by the Myo and a camera. The choreographer and
dancer then labeled the sequences in each performance using
the camera recording. Those labels were then defined as
the ground truth. The Myo signals recorded during these
three minutes performances in association with the labels
constituted this first dataset.

B. Initial Feature Extraction

A state-estimation filter built in the IMU already provides
the three orientations of the forearm; its data is thus simple
to interpret. As described previously, the raw EMG data is,
on the contrary, very noisy and difficult to directly associate
with a specific movement. Based on the general similarity
between accelerometer data from tactile sensing and the
EMG signals of the Myo, some features were borrowed
from work pertaining to surface identification [21], to which
others from [22], [23] were added. In the end, the following
features were extracted from temporal windows of one to
three second duration:

• Minimum and maximum values,
• Mean, variance, skewness, kurtosis and the fifth mo-

ment.
• Integrated Values (IV - sum of absolute value of the

signal),
• Mean Absolute Value (MAV - average of the sum of

absolute value of the signal ),
• MAV1 (similar to MAV but using weighted average

with more weight given on central values),
• MAV2 (as MAV1, with a different weight distribution),
• Root Mean Square (RMS - The square root of the mean

square of the signal),
• Zero Crossing (ZC - Number of time the signal cross

the value zero),
• Waveform Length (WL - The sum of the difference

between two consecutive data point over the signal),
• Slope Sign Change (SSC - The number of change

between positive and negative slope of the signal),
• Willison Amplitude (WAMP - number of overreached

difference in the signal amplitude), and
• Median Frequency.
Due to limitations of the Myo software, it was not al-

ways possible to sample the various signals at a frequency
greater than 10Hz in some experimental setup. For this
reason, aside from the median frequency, no other frequency-
based features were extracted from the EMG signals in
the first experiment (Section III-A). As the main spectral
contributions of the muscular reactions to the EMG are in
the range of 5-10Hz to 400-450Hz [24], it is expected that
there will be a reduced classification performance. In the
second experimentation, however, frequency-based features
are added to the classifier inputs (Section IV) to enhance its
performance.



As a clarification, it is important to distinguish between
the type of features extracted (e.g. mean, variance, Zero
Crossing, etc.) and the features ensemble generated from
all these feature types. In fact, there are eight channels
from the sEMG and three from the IMU for a total of 11
channels each having 17 features per channel, creating a
sub-window of 187 features. The number of sub-windows
per example was directly dependent on the length of the
window, each sub-window overlapping the previous one by
one sample. Hence, for a window of one second, 10 sub-
windows were generated whereas for a window of three
seconds, 30 were created, representing a total of 1870 and
5610 features per example respectively. Employing multiple
sub-windows within a window allowed a measure of the
features’ variation through time within one example.

C. Classifier and hyper-parameter selection

The classifier was selected based on the results from four
different classifiers: RF, support vector machines with two
different kernels (Linear and RBF) and AdaBoost. The latter
was selected as it is, like RF, an ensemble method. For each
algorithm, we repeated the following procedure five times:
learning on four artistic performances and testing on the
fifth (each time changing the test performance). The reported
metric is the average success rate of these five runs. On
each run, the hyper-parameters of the algorithms were set
by Cross-validation on the four training performances. The
hyper-parameter list were respectively:

• RF: the number of estimators and the number of features
utilized. The grid search over the number of estimators
was 10, 30, 50, 70, 100, 200, 500 and 1000. The
maximum number of features could then be equal to√
N , log(N)base2 or the total number of features, where

N is the number of estimators.
• SVM-RBF (also designed as SVM-B): the soft margin

tolerance hyper-parameter C and the parameters γ (
the parameter related to Radial Basis Function RBF
kernel) were chosen by grid search with values from
10−5 to 105 on a logarithm scale, with 20 values equally
scattered per hyperparameters

• SVM-Linear: C was chosen from 10−5 to 105 on a
logarithm scale with 20 values.

• AdaBoost: the number of estimators was found by grid
search from the same group as RF. The learning rate
was between 10−2 and 1 on a logarithm scale, with 20
values equally distributed on the scale.

All algorithms were taken from scikit-learn [25].

The results presented in Fig. 3 show the four classifiers
trained with all the features discussed in Sec. III-B with the
dataset created in Sec. III-A. In these experiments, the RF
was clearly superior. This is expected, as RFs can cope with
a large proportion of noisy features in very high dimensional
space. Indeed, RFs can handle thousands of features with a
relatively small dataset. It also has the capacity to perform
well on datasets that are non-linear and where features
have a high-level of interaction between them [26]. RF

could also be trained, within a minute by a standard laptop.
This is a key characteristic in a performance context, as
the choreographers need to get feedback rapidly about the
reliability of movement detection.
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Fig. 3. Validation result comparing RF with AdaBoost, SVM-L and SVM-
B. Bottom is the Top3 classification result, then Top2 and Top1. (Higher is
better)

D. Automatic Feature Selection

Feature selection was performed automatically, in an iter-
ative manner. We exploited the fact that RF classifiers nat-
urally select the most informative features for classification
purposes. Thus at each iteration, the RF classifier with 500
estimators was trained ten times, then the average importance
of each feature was computed. During this procedure, the
maximum number of features per tree equal to log(N),
where N is the number of features of the current iteration.
Both values were chosen based on the grid search, described
in the previous section. Any feature that was not present
amongst the top 20% was rejected, as the RF did not consider
them as part of the most relevant group. Features were treated
individually for each signal, as the most informative features
might vary from one sensor to another. Once every feature
not present at the top 20% has been removed, the process
iterates. This procedure is repeated until i) the accuracy in
validation starts to decrease for two consecutive iterations
or ii) the first 20% feature group has not changed between
iterations. At this point, the best feature set is the previous
one that provided the highest accuracy in validation. As it
was the case in the example of Fig. 4 (one second window),
five iterations or less were generally sufficient. In the later
example, the final features selected for the RF classifier were:

• for IMU orientation: Maximum, Mean, Variance, IV,
MAV and RMS;

• for EMGs: Variance, IV, MAV and RMS.
Other experiments with RF on EMGs suggest to distribute

weights on each feature and conserving all of them [27].
Minimizing the features space is more suitable considering
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Fig. 4. RF average performance over 10 trainings with features removed
and windows of one second, during the automatic feature selection phase.
The number next to a data point is the iteration number.

the real-time requirement as doing otherwise would incur too
much processing delays.

E. Overlapping Time-window Classification

The tests described in the previous section each employed
time-windows ranging from one to three seconds (10 to
30 samples). Notwithstanding transitions between classes,
the longer this time-window, the more precise the extracted
features are. This however, adds a detrimental latency for the
detection of transitions. As the dancers will be performing
live interactions with the robots, this latency must be limited.
In the comparison presented in Section III-A, the time-
windows were non-overlapping, i.e. no two samples belonged
to the same window.

To increase the training set size (as data is expensive and
time-consuming to collect), we tested the use of overlapping
windows as a form of data augmentation. New windows were
generated by sliding the window by exactly one sample. For
a time-window of duration L, this means that L−1 samples
were shared between consecutive windows. This approach
is also minimize the latency of classification during a live
performance. These overlapping windows were tested with
the RF classifier only, as it was deemed the best in Sec. III-
C. Also, only the subset of features determined in Sec. III-
D were used. The Top1 and Top3 performances using 2.5
second windows were 72% and 88% respectively. In TopX,
if the correct classification is within the X most confident
prediction from the classifier then it is characterized as a
classification success. Note that a dummy classifier always
predicting a random class would achieve a Top1 accuracy of
7.69 %. This first experimentation shows that machine learn-
ing techniques allows the recognition of multiples moods
with few examples even at low frequency rate. This method
would thus be suitable for performances involving multiples
dancers with limited computational resources. The next ex-
periments explore the case where higher frequencies and an
additional armband are leveraged.

IV. LIVE EXPERIMENT WITH HIGH SAMPLING RATE AND
WITHOUT FEEDBACK

The next set of experiments was conducted to complement
several aspects that the previous experimental setup did not

Fig. 5. Dancer Claudia Tremblay during one of the performance.

allow:
• Leveraging the full 200 Hz frequency of data coming

from the EMG for classification.
• Study of the performances with the same movement

classes but different body orientations.
• Employing an additional Myo armband on the calf to

extend the possible movements that can be recognized.
The datasets utilized in this section were acquired on a

dancer wearing two Myo armbands: one on the forearm and
one on the calf. Both IMU orientations were extracted at
almost 50 Hz and the forearm’s eight EMG channels at
almost 200 Hz. The performer was instructed to develop
nine movements that she then regrouped into three different
choreographies (Fig. 5) refered to as moods. The moods
were differentiated by the emotion that they each subjec-
tively represented. The training sets were recorded with the
performer repeating the nine movements for 20 seconds each.
This method of collecting training data offer the advantage
of obtaining the ground truth labels without any input from
the dancer/choreographer. From this lexicon, the dancer then
create three performances of about three minutes each. One
of these is serves as a validation set, and the two others to test
the performance of the classifier. A fourth performance was
created to measure the impact on the classifier’s accuracy of
variable body orientations with the same lexicon.

A. Classifier performances and feature optimization

The use of two Myos and a higher data acquisition
frequency are taken into account and the automatic
feature algorithm (Section III-D) is applied on the current
dataset. Furthermore, only two of the eight available EMG
channels were employed (selected by cross-validation on
the validation set). Note that as the IMU and EMG sensors
are operating at different sampling rate, the number of data
point per sub-window for each modality was set so that
they covered the same amount of time. The new subset of
selected features for the EMG were: Variance, IV, and MAV.
The IMU features resulting from the features selection
were: Maximum, Mean, Variance, IV, MAV and RMS.
However, as the dancer was executing the movements with
slight body orientation variation, RF over-fitted the absolute
orientation of the performer using the YAW data. This led
to significant drop in accuracy on the validation set. To
overcome this, only the variance of the YAW (for both IMU)
was employed as it was the only feature that was agnostic
to the absolute orientation of the dancer. Furthermore,
window of 1 second with an overlap of 0.3s were applied
to achieve a low-latency classification. The final settings for



the classification performances showed in Fig. 7 were:

• Random Forest algorithm with the previously detailed
hyper-parameters.

• One second time-window to detect a class.
• Overlaps of 0.3s between successive windows.
• Measurements of the orientation of the right forearm

and right calf, with two EMG channels on the forearm.
It resulted in a performance of 88% for the nine move-

ments and 94% for the three moods (average for both on
100 runs on each performance) with most of the errors
arising around the transitions. Additionally, more informal
user experiments were conducted with the final system to
qualitatively assess the flexibility of the system. In those
experiments two professional dancers, one of which is also
a professional choreographers analyzed the output of the
classifier in real-time (i.e. during the dance performance)
and agreed both on the coherence of the predictions and the
low latency of the classifier. These performances are thus
suitable to close the loop with a robot having a sense of
which emotional ambiance the user is in.

Fig. 6. Confusion matrix (in %) for RF trained on three moods.

Training the classifier on the movements that are then
mapped to their respective moods, yielded a success rate of
95 % for the three moods (average on 100 runs on each
performance). Fig. 6 shows between which moods the few
wrongful blends occurred. If it increased the success rate by
only 1%, it is relevant to keep this approach in mind for
larger lexicons.

B. Impact of IMU vs. EMG data for single and dual arm-
bands

We compared the informative value of the EMG from the
arm EMGa against the IMU of the leg (IMUl) and arm
(IMUa) using the accuracy of RF on the nine classes. The
classification results for all possible combinations is shown
in Fig. 7. One can see that the IMU, as a single source
of information, performs better than the EMGs, which is not
surprising given the complexity and noise of the latter. Taken
separately, the IMUs on the forearm and calf give similar
performances but together they increase the performance of
the classifier by more than 10%. Valuable information can
still be gained from the EMG, however. Alone, the forearm
Myo is better without EMGs signals; but when combined to

the calf and forearm IMU, the two EMGs channels increased
the accuracy by up to 3%.
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Fig. 7. RF 9-class performances on the second experiment. (a) means arm
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C. Absolute orientation over-fit

If the performance is not created to face a specific ori-
entation as is the case when performing in theatre-in-the-
round (i.e. the audience surrounds the dancer). Care must be
taken to include different body orientations when building
the training dataset, otherwise the absolute orientation of the
dancer during training will be over-fitted by the classifier. A
fourth performance in this second experiment was dedicated
to test this issue. The dancer was instructed to continuously
change her orientation while building a new training dataset
of 20 seconds per movements referred to as orientation
training dataset. The dancer also created a new performance
of three minutes, again while continuously changing her
body orientation. Apart from this, all the other parameters
in this test (e.g. number of training/test examples, hyper-
parameters, features) are the same as described earlier in
this section. The accuracy on this new performance using
the precedent training dataset is 52% and 75% for the nine
movements and the three moods respectively. However, when
using the orientation training dataset, the accuracy grows
to 68% and 84% respectively which are in a workable
range for the use-case described in the article. Because this
type of performance introduces a lot more variance between
examples of the same gesture, more training data should be
collected to achieve classification accuracy similar to those
obtained in Sec. IV-A.

V. DISCUSSION AND FUTURE WORKS

Throughout this paper, we explored the scenario of lever-
aging a wearable sensor device to control a robot in the
context of a live dance performance. We demonstrated an
end-to-end system that allowed a dancer to create a lexicon
of emotionally-driven movements that a robot is able to
react to in real-time through our machine learning oriented



system. The proposed system employs Myo armbands which
have the advantages of being inexpensive, fast to use, non-
intrusive and work well even with obstructed line of sight.
The signal they produce is however noisy compared to Mo-
cap or camera systems. We showed that our machine learning
driven approach nevertheless achieved a robust classifications
accuracy in real-time at a frequency of 1 Hz of 88% and 94%
for nine movements and three moods respectively using only
20 seconds of training data per movement. We noted that
increasing the size of the windows improved the classifier’s
success rate, at the expense of its applicability in live settings
(due to increased latencies). We also presented that including
EMG signals in combination with IMU signals produce
a small but noticeable increase in accuracy. Thus, when
possible, integrating EMG signals into the classifier should
be preferred. However, for performances including multiples
dancers, only employing IMU signals can be a good trade-
off between the classifier performance and computational
load. Amongst the limitations of such a system, we showed
sensibility to the body orientation, but still within an accept-
able performance. We hypothesized that the body orientation
problem could be minimized by collecting more data for the
training set in order to augment the accuracy.

Future experiments include the use of the system in a live
setting with a robotic device in order to close the loop.
Ultimately, the robot determines its movements from the
performer’s, allowing the emergence of an improvised and
hybridized “pas de deux”. Adding other interaction interfaces
such as singing recognition, the artists will be able to create a
hybrid choreography with the machine. We will also explore
the problem of body orientation and test if a wider training
set would help achieve higher accuracy. Finally, experiments
with multiple dancers will also be performed as the proposed
system is particularly well suited for this application.
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to their choreographers Elisabeth Toussain and Armando
Menicacci.

REFERENCES

[1] Stelarc, “Third hand,” http://stelarc.org/?catID=20265, accessed: 2016-
11-29.

[2] S. Wilson, Information Arts: Intersections of art, science and technol-
ogy. Cambridge, Massachusetts: The MIT Press, 2002.

[3] D. St-Onge, N. Reeves, and N. Petkova, “Robot-human interaction: A
human speaker experiment,” in Proceedings of 12th Annual Confer-
ence on Human-Robot Interaction, Vienna, Austria, March 2017, pp.
1–8.
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