
Time Adaptive Dual Particle Swarm Optimization

Ulysse Côté Allard*, Gabriel Dubé*, Richard Khoury,
Luc Lamontagne, Benoit Gosselin and François Laviolette

Abstract— This paper presents a novel particle swarm op-
timization (PSO) algorithm that combines the strengths of
several PSO variants into a single competitive algorithm. This
novel algorithm, named Time Adaptive Dual Particle Swarm
Optimization (TAD-PSO), is comprised of two specialized pop-
ulations, with one focusing on exploration of the search space
and the other on exploitation. The main population, specialized
in exploration, uses orthogonal learning to create information-
rich exemplars which intelligently guide particle movement
throughout the search space. The auxiliary population uses
a PSO variant known for its very fast convergence speed,
and thus very high performance on unimodal problems. This
population is specialized in exploitation of the interesting local
minima. The main population size decays linearly, to foster
exploration early and convergence in the later stages of the
optimization procedure. Additionally, TAD-PSO does not have
the topological structure of the swarm as an algorithm hyper-
parameter, making it a fast and simple algorithm to apply to
new problems. TAD-PSO was tested extensively and compared
to 6 widely used PSO variants on 19 benchmark problems, for
10, 30 and 100 dimensions. TAD-PSO consistently ranked first
in each dimensional space, making it a competitive optimization
algorithm on both unimodal and multimodal problems.

I. INTRODUCTION

The problem of constrained optimization has been an
active area of research for decades, from purely mathematical
paradigms [1] to optimization algorithms inspired by evolu-
tion [2], [3], the movements of animal swarms [4], [5], [6]
and other animal behavior [7], [8], [9].

Particle Swarm Optimization (PSO) algorithms [10], [11]
are loosely based on the behavior of a flock of birds
collaboratively seeking the best areas to feed. The movement
of a particle is guided by its individual knowledge (the best
location it has personally visited), and the knowledge of the
swarm (the best position collectively found by the swarm).
However, problems can arise from this duality (see Sec. III).

Some PSO algorithms, in particular Comprehensive Learn-
ing Particle Swarm Optimizer (CLPSO) [12] and Orthogonal
Learning Particle Swarm Optimizer (OLPSO) [13], solve this
by combining the individual and collective information into
a single “exemplar”. CLPSO exemplars are typically poor
in information, but have the advantage of partially removing
the dependence on the swarm topology (see Sec. II and III).
Meanwhile, OLPSO exemplars are rich in information, at the
cost of function evaluations.

Ulysse Côté Allard and Benoit Gosselin are with the Depart. of Computer
and Electrical Engineering; Gabriel Dubé, Richard Khoury, Luc Lamontagne
and François Laviolette are with the Depart. of Computer Science and Soft-
ware Engineering; Université Laval, Québec, Québec, G1V 0A6, Canada.
Contact author email: ulysse.cote-allard.1@ulaval.ca
*These authors contributed equally to this work.

Another issue faced by PSO algorithms is the inherent
trade-off between the exploration of the search space and the
exploitation of a local minimum. Algorithms that converge
rapidly on unimodal problems will tend to do so prematurely
when applied to multimodal functions [14]. On the other
hand, algorithms that explore a wider portion of the search
space will waste function evaluations and exhibit slow con-
vergence when applied to unimodal functions [14].

To minimize the impacts of the trade-off problem, this
paper presents a novel algorithm, TAD-PSO, which employs
two populations. One is specialized for the exploration of
the search space, the other for the exploitation. Specifically,
the main population leverages exemplars that combine the
CLPSO and OLPSO methods of exemplar construction. The
second is an auxiliary population based on Self-Organizing
Hierarchical Particle Swarm Optimizer With Time-Varying
Acceleration Coefficients [15] (HPSO-TVAC) designed for
rapid convergence. This provides comprehensive inspection
of the promising local minima found by the main population.

The dual population approach of the algorithm aims at
being able to solve complex and high-dimensional problems
efficiently. The over-evaluation problem stemming from the
OLPSO exemplar construction is addressed via a decaying
population (see Sec. IV). In other words, each population
is specialized for either of the two tasks of exploration or
exploitation. The main population addresses complex and
highly multimodal functions, while the auxiliary population
addresses simple and unimodal functions. This dual popula-
tion approach seems ideal for application to a wide variety of
optimization problems, which are often mixtures, to varying
degrees, of these two types of problems.

The remainder of the paper is organized as follows; the
original PSO algorithm is presented in Sec. II. Sec. III
describes relevant variants of the PSO algorithm (CLPSO,
OLPSO, HPSO-TVAC). A novel algorithm, TAD-PSO, is
presented in Sec. IV. Penultimately, a comprehensive exper-
imental evaluation of TAD-PSO is conducted on 19 bench-
marks in high dimensions (Sec. V). Finally, conclusions and
future works are given in Sec. VI.

II. PARTICLE SWARM OPTIMIZATION

PSO [10], [16], [11] is one of the most popular op-
timization algorithms based on animal swarm behavior.
The standard PSO algorithm emulates swarm behaviors
by using simple rules to move the particles around a D-
dimensional search space. “Particle” is used to refer to each
minimum-seeking entity, while “swarm” is the collection
of the aforementioned particles. The ith particle of the

swarm at iteration time t is defined by a position vector
Xi,t = [Xi,t

1 ,Xi,t
2 , ...,Xi,t

D] and a velocity vector Vi,t =
[Vi,t

1 ,Vi,t
2 , ...,Vi,t

D]. Additionally, each particle keeps track
of its personal best visited position, denoted by Pbi,t, and
the global best position, denoted by Gbi,t, found by the
particle and its neighbors.

As this paper focuses on minimization problems, the best
visited position is defined as the position associated with the
lowest function value (“best fitness”). The vectors Xi,t and
Vi,t are initialized randomly and updated each generation
by the following rules:

Vi,t+1
d = wtVi,t

d +c1r1,d(Pbi,t
d −X

i,t
d)+c2r2,d(Gbi,t

d −X
i,t
d)
(1)

Xi,t+1 = Xi,t +Vi,t+1, (2)

where d is the considered dimension of the vector; wt is
the “inertia weight” at iteration t, a scalar that determines
the amount of velocity that should be conserved from the
previous generation. The inertia weight decreases linearly
from wmax to wmin as the iteration count t increases to
the maximum number of iterations maxiter, following the
formula

wt = wmin + (wmax − wmin)
maxiter− t

maxiter
. (3)

This update rule has proven to significantly boost perfor-
mance of PSO [17], [18], [15]. c1 and c2 are positive
scalars serving the same role as the inertia weight for their
respective component; r1,d and r2,d are two random numbers
uniformly and independently sampled from [0, 1]. The term
c1r1,d(Pbi,t

d − Xi,t
d) is referred to as the “cognitive com-

ponent”, as the guidance it offers comes from the particle’s
own personal knowledge. The term c2r2,d(Gbi,t

d −Xi,t
d) is

referred to as the “social component”, as it draws knowledge
from the neighboring particles. Both the personal neighbor-
hood best positions are named “exemplars” (i.e. locations in
the search space to which a particle is attracted).

What is referred to as the “neighborhood” of a particle
depends on the swarm’s topological structure. Previous work
has shown that, generally speaking, a small neighborhood is
auspicious to solving complex or multimodal optimization
problems, whereas more connected swarms are better suited
for simpler or unimodal problems [19], [14], [11]. Two of the
more commonly featured topologies are the global topology,
in which the neighborhood of a particle is the entire swarm,
and the ring topology, in which the neighborhood of the ith
particle is comprised of only the (i − 1), i and (i + 1)th
particles. In this paper, algorithms will default to the global
topology. Exceptions are identified with an “-L”, and employ
a ring topology instead.

The last two important concepts in the standard PSO
pertain to the search boundary range. Firstly, any function
evaluation (FE) outside of the search space is wasted, as such
a point would be an inadmissible solution. The problem of
managing particles that leave or want to leave the search
space is known as “bound handling”. Although many solu-
tions exist [20], a simple and prevalent technique [13], [15],

[12] is to let particles leave the search space as they please,
while evaluating only the particles that represent admissible
solutions. Because exemplars are always within the search
space boundaries, particles that leave the search space will
naturally return within a few iterations. Secondly, a maximal
velocity is enforced, to ensure that particles do not behave
too wildly. Several methods are proposed [21]. The most
common solution [10], [13], [15], [12] is to limit the velocity
in every dimension to a user-specified percentage of the
search space range. Unless specified otherwise, algorithms
presented in this paper utilize those two methods, albeit
with different hyper-parameter values for different algorithms
(which will be specified in Sec. V).

III. BACKGROUND

The original PSO algorithm has been altered by many
researchers [22], [23], [24], [25] since its introduction by
Kennedy and Eberhart [10] in 1995. The algorithm pre-
sented in this paper combines three versions: CLPSO [12],
OLPSO [13] and HPSO-TVAC [15].

A. Comprehensive Learning Particle Swarm Optimizer

When using a global topology, the social component of
any particle is only influenced by the single best particle
of the swarm. This tends to lead to premature convergence
when optimizing multimodal functions [14]. Moreover, when
optimizing functions of several variables, a particle with an
unattractive fitness might still have found optimal variable
values in some dimensions. In this case, even local topologies
(e.g. ring [14], random [26], von Neumann [14]) often fail
to properly exploit this information, as the social component
still only relies on a single particle.

Furthermore, equation (1) has two other major draw-
backs. The first is the possibility of wasteful back-and-forth
motions, occurring when a particle is midway between its
personal best location and its neighborhood’s best location.
This is called the “Oscillation” problem [27], [13]. A second
issue occurs when the combined influence of a particle’s
historical and neighborhood experiences deteriorates some
component of the velocity vector, causing the particle to fly
in the wrong direction in some dimensions. This is called
the “Two steps forward, one step back” problem [28], [13].

To solve these two problems, the velocity update equa-
tion utilized by the Comprehensive Learning PSO (CLPSO)
algorithm builds a single exemplar which replaces both the
social and the cognitive components of the original PSO.
Additionally, as CLPSO also allows any particle to be part
of any other particle’s exemplar, the issues of premature
convergence and sub-optimal use of information in high-
dimensional spaces are also considerably lessened [12].

The velocity update equation of CLPSO is as follows:

Vi,t+1
d = wtVi,t

d + c rd(Ecli,td −Xi,t
d), (4)

where Ecli,t is the exemplar followed by the ith parti-
cle (at iteration t) and obtained via Algorithm 1. While
the topological structure of CLPSO is global, equation (4)
emulates a local topology to a certain extent. Indeed, by

construction, it is highly unlikely that an exemplar will only
depend on the swarm’s best particle. Rather, it is expected
that a certain number of the exemplar’s dimensions will
be independent to the global best. This reduces the risk of
premature convergence.

Algorithm 1 CLPSO exemplar construction

1: procedure Ecli

2: exemplar← an all-zero length D array
3: for d = 1, . . . , D do
4: if Pci ≤ rand() then
5: exemplar[d]← i
6: else
7: Ia ← Choose one from {1, . . . , s}\{i}
8: Ib ← Choose one from {1, . . . , s}\{i, Ia}
9: fa ← Particles[Ia].getBestFitness()

10: fb ← Particles[Ib].getBestFitness()
11: if fa ≤ fb then
12: exemplar[d]← Ia
13: else
14: exemplar[d]← Ib

return exemplar

Note that in Algorithm 1, procedure rand() returns a
random number uniformly sampled from [0, 1]; procedure
Particles[i] returns the ith particle of the swarm; procedure
getBestFitness() returns the best fitness ever found by the
particle. Finally, Pci is the “learning probability” of parti-
cle i, as introduced in CLPSO’s article [12]. This probability
is calculated once for each particle at the initialization of the
optimization procedure, using the following formula

Pci = .05 + .45×
exp

(
10(i−1)
s−1

)
− 1

exp(10)− 1
, (5)

where i is the index of the creature, and s is the population
size of the swarm. For all dimensions, Pci is the probability
that a particle will learn from a personal best other than
its own. Finally, a detail was omitted from Algorithm 1 in
order to avoid cluttering. If all dimensions of the exemplar
are equal to i (i.e. the exemplar is simply the particle’s own
personal best), randomly choose a single dimension to learn
from another particle’s best location.

Each exemplar contains a list of particle indexes, rather
than a list of variable values. When updating the velocity
of a particle, each index needs to be replaced by the corre-
sponding particle’s personal best value in the corresponding
dimension. This way, the exemplars will automatically up-
date whenever any particle finds a new personal best position.
This avoids using outdated information, which would inhibit
learning. The authors of [12] suggest creating a new exem-
plar whenever seven generations go by without a particle
improving its best fitness. This number G of generations
between exemplar constructions is the “refreshing gap”.

B. Orthogonal Learning Particle Swarm Optimizer
Orthogonal Learning PSO (OLPSO) [13] appropriates

Orthogonal Experimental Design (OED) [29] to combine

the personal and neighborhood experiences of each particle
into a single exemplar. Using this method, which can be
applied to any swarm topology, the “Oscillation” and “Two
steps forward, one step back” problems are solved, while
maintaining or improving performance over CLPSO, as the
quality of the produced exemplars is higher [13].

Let Pbi be the personal best location of the ith parti-
cle, and Gbi be its neighborhood best location, two D-
dimensional vectors. Optimally, the exemplar should contain
the best search information from each of these two locations.
For each dimension d, the goal is thus to find which of Pbi

d

or Gbi
d should be the exemplar’s value in that dimension.

In other words, for a given dimension, a choice has to be
made between the personal and neighborhood knowledge
when guiding a particle. The brute force approach would
be to evaluate the fitness for each of the 2D combinations
of values from Pbi and Gbi. However, a better approach
would be to use OED to predict the best combination using
a representative sample of at most 2D combinations. The
sample is built using an orthogonal array, while the best
combination is determined by applying factor analysis [30]
on the results of the experiment.

An orthogonal array with N factors and Q levels is
denoted LM (QN), where M is the required size of the
sample. In the context of building an exemplar from two
D-dimensional vectors, the factors are the dimensions (1 to
D), while the levels are the two possible values for that
variable: personal best or neighborhood best. These levels
are denoted respectively 0 and 1. Therefore, we are interested
in orthogonal arrays of the form LM (2D), where the sample
size M is given by M = 2dlog2(D+1)e ≤ 2D.

The following is an example of a suitable L8(2
5) array

L8(2
5) =



0 0 0 0 0
0 0 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0


.

Each row of LM (2D) represents a D-dimensional sample.
The dth variable of the sample should take its value from
the personal best if the dth element of the row is 0, and
from the neighborhood best if it is 1.

The procedure for constructing an LM (2D) orthogonal
array is given in Algorithm 2, adapted from [13], [31]. The
algorithm will in general return an array with more than D
columns. As any combination of columns of an orthogonal
array is still an orthogonal array [13], it suffices to eliminate
columns beyond the Dth.

Given the M ≤ 2D sample points defined by LM (2D),
and given the associated fitness values f1, . . . , fM , the factor
analysis predicts the best possible combination of levels; for
each dimension, whether the exemplar variable value should
come from the personal best or the neighborhood best. Define

zmd0 = LM (2D)[m][d],

Algorithm 2 Construction of an LM (2D) orthogonal array

1: procedure LM (2D)
2: u← dlog2(D + 1)e
3: M ← 2u

4: C ←M − 1
5: L← an empty M × C array
6: for a = 1, . . . ,M do
7: for k = 1, . . . , u do
8: b← 2k−1

9: L[a][b]←
(⌈

a−1
2u−k

⌉)
mod 2

10: for a = 1, . . . ,M do
11: for k = 2, . . . , u do
12: b← 2k−1

13: for s = 1, . . . , b− 1 do
14: L[a][b+ s]← (L[a][s] +L[a][b]) mod 2

return L

i.e., 0 if the value of the dth variable of the mth sample point
was taken from level 0, and 1 if it was taken from level 1.
Define zmd1 = 1−zmd0. The effect of the level q on the dth
variable is denoted Sdq and is calculated as follows [13]:

Sdq =

M∑
m=1

fmzmdq

M∑
m=1

zmdq

. (6)

In other words, Sdq is the mean of the function values for
the sample points where the dth variable was taken from
level q. For instance, Sd0 gives an approximation of the
function value that should be expected if the dth variable
is set to be taken from the personal best location of the
particle. As such, for a minimization problem, variable d of
the exemplar should be taken from the personal best location
if Sd0 < Sd1, and from the neighborhood best otherwise. The
exemplar is constructed by applying this reasoning to each
of the D dimensions. To make full use of the FEs required
by Algorithm 3, and to avoid using a sub-par exemplar, the
position obtained by factor analysis is also evaluated and
compared in fitness to the sample combinations. If the con-
structed position is inferior to the best sample combination,
the best sample combination is instead taken as the exemplar.
The factor analysis and construction of the exemplar is
summarized in Algorithm 3.

An exemplar is not constructed for every particle every
generation, due to the extremely high cost of doing so.
Rather, a new exemplar is constructed only if there has
been no significant improvement to a particle’s personal best
location for a number of generations (see the refreshing gap
in CLPSO, Sec. III-A). In addition, note that, similar to
CLPSO, the exemplar is a list of levels, rather than an actual
search space location. Every time the exemplar needs to be
utilized, each level needs to be replaced by the corresponding
variable value: from the personal best if the level is 0,
and from the neighborhood best otherwise. This way, the
exemplar can be reconstructed every iteration without any

Algorithm 3 OLPSO exemplar construction

1: procedure Eoli

2: L← LM (2D)
3: M ← L’s number of rows
4: F ← an empty length M array
5: for m = 1, . . . ,M do
6: X ← an empty length D array
7: for d = 1, . . . , D do
8: if L[m][d] = 0 then
9: X[d]← Pbi[d]

10: else
11: X[d]← Gbi[d]

12: F [m]← f(X)

13: exemplar← an empty length D array
14: X ← an empty length D array
15: for d = 1, . . . , D do
16: S ← 0
17: for m = 1, . . . ,M do
18: if L[m][d] = 0 then
19: S ← S + F [m]
20: else
21: S ← S − F [m]

22: if S < 0 then
23: exemplar[d]← 0
24: X[d]← Pbi[d]
25: else
26: exemplar[d]← 1
27: X[d]← Gbi[d]

28: if f(X) > minF then
29: i← argminF
30: exemplar← row i of L (columns 1 to D)

return exemplar

FE, and will naturally evolve as new best locations are found
by the particle and its neighbors.

OLPSO uses this exemplar to update the velocity, rather
than both the personal best and neighborhood best. Let
Eoli,t be the exemplar constructed from Pbi,t and Gbi,t

at iteration t. The update rule in OLPSO is the following :

Vi,t
d = wtVi,t

d + c1r1,d(Eoli,td −Xi,t
d) (7)

C. Self-Organizing Hierarchical Particle Swarm Optimizer
With Time-Varying Acceleration Coefficients

1) TVAC: In the original PSO [10], the inertia factor is
held constant throughout the generations. A strong inertia
weight is desired early, as it fosters wandering of the particles
and exploration of the search space [15]. However, a strong
inertia is inadequate in the late stages of optimization, where
wandering should be limited in order to promote conver-
gence [15]. Recall that formula (1) uses a linearly decaying
inertia weight to help achieve this. This begs the question of
whether the cognitive and social parameters c1 and c2 should
be made to vary similarly with time. [15] argues that a high
cognitive parameter value c1 leads to wandering, while a high

social parameter value c2 promotes convergence. Therefore,
the cognitive parameter should be high in early generations
and progressively get lower, while the social parameter
should start low and increase with time. This promotes
global search in the early stages while preventing premature
convergence, and promotes convergence when nearing the
maximal number of iterations. Time-Varying Acceleration
Coefficients PSO (PSO-TVAC) [15] consists of updating the
velocity with (1) while linearly varying the coefficients. The
update rules are:

wt = wmin + (wmax − wmin)
maxiter− t

maxiter
(8)

ct1 = c1min + (c1max − c1min)
maxiter− t

maxiter
(9)

ct2 = c2max − (c2max − c2min)
maxiter− t

maxiter
(10)

Vi,t
d = wtVi,t

d +ct1r1,d(Pbi,t
d −X

i,t
d)+ct2r2,d(Gbi,t

d −X
i,t
d).
(11)

The maximal values c1max and c2max should be 2.5, while
the minimal values c1min and c2min should be 0.5 [15]. PSO-
TVAC provides increased performance when compared to
original PSO [15].

2) HPSO: It has been observed that swarms tend to lack
diversity in the later stages of optimization [15]. This causes
superfluous FEs and premature convergence, and therefore
hinders the quality of the final solution. [15] proposes a mu-
tation operation to foster diversity and therefore enhance the
global search capability of the swarm and prevent premature
convergence. The mutation operation consists in attributing
a random value to some dimension of the velocity vector.
As is typical of evolutionary algorithms [32], the mutation
operation is applied only in certain situations, or randomly.
HPSO [15] applies this mutation operation when the velocity
value in a given dimension is 0, that is when the particle
has stopped moving in this dimension. Additionally, HPSO
removes the inertia term in (1), leading to the following
velocity update rule:

Vi,t+1
d = c1r1,d(Pbi

d −Xi,t
d) + c2r2,d(Gbi,t

d −Xi,t
d) (12)

If the updated velocity value Vi,t+1
d is 0 (to some precision),

the mutation operation is applied. The velocity value is
replaced using the following rules

vt =

(
vmin + (vmax − vmin)

maxiter− t

maxiter

)
Vmaxd (13)

Vi,t+1
d = r3,dv

t (14)

where vt is the “reinitialization velocity”, r3,d is a number
uniformly sampled from [0, 1], Vmaxd is the maximal
velocity, and vmin and vmax are constants, typically 0 and 1.
Finally, with probability 0.5, Vi,t+1

d is multiplied by −1.
By granting a random velocity to the dimensions in

which the particles have stagnated, a more diverse swarm is
achieved. The reinitialization velocity is decreased linearly
with time, once again to favor global search early and
convergence in the later stages of the optimization procedure.

[15] combines this HPSO update rule to TVAC to obtain a
highly competitive PSO algorithm, HPSO-TVAC.

IV. TIME ADAPTIVE DUAL PARTICLE SWARM
OPTIMIZATION

Hyper-parameter selection is an important issue in PSO.
Indeed, because non-convex optimization problems are usu-
ally computationally heavy to solve, it is often impractical
to run an algorithm to completion multiple times in order to
find the best parameter values. This issue is most salient for
the choice of a topological structure, which can have a high
impact on the final solution (as shown in the experimental
sections of several articles [13], [12], [14]).

As mentioned in Sec. III-A, CLPSO emulates a local
topology to a certain extent, even though every particle
possesses full knowledge of the swarm. Therefore, CLPSO
combines advantages from both global and local topologies,
without the difficult task of choosing a topology. However,
considering that any particle can be applied in the con-
struction of CLPSO’s exemplars with little to no quality
requirement, these exemplars tend to be relatively poor
in useful information. On the other hand, while OLPSO’s
exemplars are costly to generate, they are rich in information.

The idea behind Time Adaptive Dual Particle Swarm
Optimization (TAD-PSO) is to combine the exemplar con-
struction methods from OLPSO and CLPSO in order to
produce information-rich exemplars while also removing the
topological dependency of OLPSO. To limit the high cost
of generating OLPSO-type exemplars, most noticeable when
particles converge and new exemplars are required every
few generations, TAD-PSO utilizes a decaying population
size. To compensate for the loss of particles in the decaying
population, a second population, based on a variant of HPSO-
TVAC, is used. Finally, due to the velocity update of this
new algorithm, which depends on a single information-rich
exemplar, the previously mentioned “Oscillation” and “Two
steps forward, one step back” problems are also prevented.

The decaying population is named the “main popula-
tion” (MP), whereas the other population is referred to as the
“auxiliary population” (AP). The remainder of this section
describes in detail the behavior of both populations.

A. Main population

The purpose of the main population is exploration of the
search space. To that end, the construction of an exemplar
for the TAD-PSO main population is based on Algorithm 3,
where Gbi is replaced by Ecli. The ith TAD-PSO particle’s
exemplar at iteration time t will be denoted Etadi,t. Due to
Algorithm 3 already considering the personal best position of
a particle, the learning probabilities (Pci) from Algorithm 1
is set to a value (e.g. 42) that prohibits the utilization
of the particle’s personal best. Without this consideration,
when constructing Etadi,t, some sample combinations (see
Algorithm 3) would be the same, leading to wasted FEs and
loss of information. The velocity update rule is as follows:

Vi,t
d = wtVi,t

d + c rd(Etadi,t
d −Xi,t

d). (15)

Note that, as the swarm starts converging around a min-
imum, the local topography of a multimodal function will
start to resemble that of a unimodal function1. In that context,
the information-rich exemplars lose their value, despite their
high construction cost. Less costly velocity updates (updates
better suited for optimizing unimodal functions) could be
used in lieu of (15) when convergence is underway. This
is the task of the AP, described in Sec. IV-B. For this
reason, the MP is oblivious to the AP; the AP particles are
not considered when creating a MP exemplar. Otherwise,
particles from the MP would be disproportionally attracted
to the current general position of the highly convergent AP,
which would lessen its exploration abilities.

Because computing Etadi,t requires up to 2D FEs,
like OLPSO, TAD-PSO applies a refreshing gap of five
generations. However, this mechanic favors an increase in
superfluous FEs in the later stages of convergence, when
improving becomes harder. To prevent this, the main popu-
lation’s size decreases linearly with time, until all particles
become inactive. Once inactive, particles are neither chosen
as exemplars nor updated, but remain as an exemplar if they
were chosen prior to their deactivation. The particle chosen
to be deactivated is the one exhibiting the worst personal
best fitness value. The auxiliary population, described next,
compensates for the diminishing number of particles.

B. Auxiliary population

HPSO-TVAC was reported by [13] to be the best PSO
algorithm for optimizing unimodal functions. The auxiliary
population follows HPSO-TVAC with two simple modifi-
cations. First, considering that the mutation operation from
HPSO aims at increasing diversity and slowing convergence,
it is not applied in the auxiliary population’s velocity up-
date rule. Indeed, diversity and global search capability is
already the primary goal of the main population and would
thus be redundant here. Secondly, the inertia component is
added back to the HPSO velocity update rule, to avoid fast
stagnation due to the removal of the mutation operation.
In other words, the AP follows the PSO-TVAC update
rules (11) with varying coefficients. While PSO-TVAC is
ill-suited for multimodal problems, as it tends to get stuck
in local minima [15], high quality solutions on unimodal
problems are rapidly and consistently found even for its
mutated version, HPSO-TVAC [15], [13], [23]. The AP is
fully informed of the MP, so that it can exploit the interesting
positions it finds. The goal of the auxiliary population is
thus to compensate for the main population’s weakness;
convergence. PSO-TVAC also has the advantage of being
simple to implement and having fewer hyper-parameters than
HPSO-TVAC. The size of the auxiliary population remains
constant.

Note that versions of TAD-PSO using local topologies
were implemented and tested, but performed poorly, as

1We assume that the functions to be optimized are sufficiently well-
behaved. For example, the function f(x) =

∣∣x sin (1
x

)∣∣ + |x| (with f(0)
defined as 0) does not exhibit this desired behavior around x = 0, despite
having a single global optimum.

expected, when compared to the algorithms presented in this
paper. Due to space concerns, these results are omitted.

V. EXPERIMENTATIONS AND COMPARISONS

While the “No Free Lunch” theorem [33], [34] states that
no optimization algorithm can perform better than all others
on all possible functions, the quality of an optimization
algorithm cannot be judged any other way than from its
ability to solve a wide range of optimization problems [35].
With that in mind, TAD-PSO is tested on 19 benchmark
functions, listed in Table I, and compared to the PSO variants
on which it is based (see Table II).

A. Benchmark functions

The benchmark functions are listed in Table I. Tests were
done using 10, 30 and 100 search space dimensions (i.e.
D = 10, 30, 100). For tests in 10-dimensional search spaces,
a maximum of 5 × 104 function evaluations were allowed.
In 30 and 100-dimensional search spaces, this number was
increased to 2×105 and 5×105 respectively. For rotated and
shifted functions, M is a D ×D orthonormal matrix and c
is a D-dimensional vector, both randomly and uniformly
generated once per simulation.

B. PSO Variants

The tested PSO variants are presented in Table II. Hyper-
parameter values for each algorithm follow the recommen-
dations of their respective paper. w is the inertia weight; c1
and c2 are respectively the cognitive and social parameters
(simply c for the variants that use a single exemplar for the
velocity update); G is the refreshing gap; Rd is the range
of the search space in the dth dimension; Vmaxd is the
maximal velocity in the dth dimension; s is the swarm size.

The first two variants are the basic PSO with linearly
decreasing inertia weight, respectively using a global and
local topology (ring). The third variant is CLPSO, as pre-
sented in Sec. III-A. The fourth and fifth variants are the
OLPSO, respectively using a global and local topology (ring)
(Sec. III-B). The sixth variant is HPSO-TVAC, presented in
Sec III-C. Note that PSO-TVAC is omitted, as the algorithm
alone performs poorly when compared to HPSO-TVAC [15].
The novel algorithm presented in this paper, TAD-PSO, is
the final tested variant (Sec. IV). As every listed algorithm
is stochastic, the reported results are averaged from 30
independent runs.

TABLE II
PSO VARIANTS TO BE COMPARED

Algorithm Parameters Reference

PSO-G w = .9 ∼ .4, c1 = c2 = 2, Vmaxd = Rd/5, s = 30, 40, 50 [17]
PSO-L w = .9 ∼ .4, c1 = c2 = 2, Vmaxd = Rd/5, s = 30, 40, 50 [14]
CLPSO w = .9 ∼ .4, c = 1.49445, G = 7, Vmaxd = Rd/5, s = 30, 40, 50 [12]
HPSO-TVAC c1 = 2.5 ∼ .5, c2 = .5 ∼ 2.5, Vmaxd = Rd/5, s = 30, 40, 50 [15]
OLPSO-G w = .9 ∼ .4, c = 2, G = 5, Vmaxd = Rd/5, s = 30, 40, 50 [13]
OLPSO-L w = .9 ∼ .4, c = 2, G = 5, Vmaxd = Rd/5, s = 30, 40, 50 [13]

TAD-PSO MP: w = .9 ∼ .4, c = 2, G = 5, Vmaxd = Rd/5, s = 37, 75, 120 -AP: c1 = 2.5 ∼ .5, c2 = .5 ∼ 2.5, Vmaxd = Rd/5, s = 13, 25, 40

As TAD-PSO employs two populations, a swarm size of
40 was found to be simply too small for finding satisfactory

TABLE I
THE 19 BENCHMARK FUNCTIONS USED FOR PERFORMANCE COMPARISON.

Benchmark Problem Search Range (R) Global Opt. x fmin Name

Unimodal

f1(x) =
D∑
i=1

(
i∑

j=1
xj

)2

[−10, 10]D {0}D 0 Schwefel’s P1.2 [23]

f2(x) =
D−1∑
i=1

[
100(xi+1 − x2i)2 + (xi − 1)2

]
[−10, 10]D {1}D 0 Rosenbrock [36]*

f3(x) =
D∑
i=1

(106)(i−1)/(D−1)x2i [−100, 100]D {0}D 0 Elliptic [36]

f4(x) =
D∑
i=1

x2i [−100, 100]D {0}D 0 Sphere [13]

Multimodal

f5(x) =
D∑
i=1

[x2i − 10 cos(2πxi) + 10] [−5.12, 5.12]D {0}D 0 Rastrigin [36]

f6(x) = −20 exp
(
−0.2

√
1
D

D∑
i=1

x2i

)
− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e [−32, 32]D {0}D 0 Ackley [36]

f7(x) = 418.982887272×D −
D∑
i=1

xi sin(
√
|xi|) [−500, 500]D {420.96}D 0 Schwefel [23]

f8(x) =
D∑
i=1
|xi sin(xi) + 0.1xi| [−10, 10]D {0}D 0 Alpine [23]

f9(x) =
1

4000

D∑
i=1

x2i −
D∏
i=1

cos
(
xi√
i

)
+ 1 [−600, 600]D {0}D 0 Griewank [36]

f10(x) =
π
D

(
10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2

)
+

D∑
i=1

u(xi, 10, 100, 4) [−50, 50]D {0}D 0 Generalized Penalized [23]

Where yi = 1 + 1
4
(xi + 1), u(xi, a, k,m) =

{
k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a

Rotated and Shifted

f11(x) = 418.982887272×D −
D∑
i=1

zi, where zi =

{
yi sin

√
|yi|, |yi| ≤ 500.0

−.001(|yi| − 500)2, otherwise
and y = y′ + {420.96}D , y′ =M

(
x− {420.96}D

)
[−500, 500]D {420.96}D 0 Rotated Schwefel [12]

f12(x) =
D−1∑
i=1

[
100(yi+1 − y2i)2 + (yi − 1)2

]
, where y =Mx [−10, 10]D {0}D 0 Rotated Rosenbrock [36]

f13(x) =
D∑
i=1

[y2i − 10 cos(2πyi) + 10], where y =Mx [−5.12, 5.12]D {0}D 0 Rotated Rastrigin [36]

f14(x) =
D−1∑
i=1

[
100(yi+1 − y2i)2 + (yi − 1)2

]
, where y = x− c [−10, 10]D {1}D + c 0 Shifted Rosenbrock [36]

f15(x) =
D∑
i=1

[y2i − 10 cos(2πyi) + 10], where y = x− c [−5.12, 5.12]D c 0 Shifted Rastrigin [36]

f16(x) =
D∑
i=1

[y2i − 10 cos(2πyi) + 10], where y =M(x− c) [−5.12, 5.12]D c 0 Shifted Rotated Rastrigin [36]

f17(x) = 0.5 +

∣∣∣∣∣ D∑i=1
y2i −D

∣∣∣∣∣
1/4

+ 1
D

(
0.5

D∑
i=1

y2i +
D∑
i=1

yi

)
, where y =M(x− c) [−100, 100]D {−1}D + c 0 Shifted Rotated HappyCat [36]

f18(x) = sin2(πw1) +
D−1∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wD − 1)2

[
1 + sin2(2πwD)

]
, where wi = 1 + yi−1

4
and y =M(x− c) [−100, 100]D {1}D + c 0 Shifted Rotated Levy [36]

f19(x) = 0.5 +

∣∣∣∣∣∣
(
D∑
i=1

y2i

)2

−
(
D∑
i=1

yi

)2
∣∣∣∣∣∣
1/4

+ 1
D

(
0.5

D∑
i=1

y2i +
D∑
i=1

yi

)
, where y =M(x− c) [−100, 100]D c 0 Shifted Rotated HGBat [36]

∗Rosenbrock function can be considered multimodal in high dimensions [36]

solutions. Furthermore, keeping the linear decay of the main
population in mind, a larger than average population size was
selected for the main population. We used a main population
size of 37 for 10 dimensions, 75 for 30 dimensions, and
120 for 100 dimensions, with respective sizes of 13, 25
and 40 for the auxiliary population. In an effort not to skew
the experimental results in favor of TAD-PSO, the TAD-
PSO population sizes were settled upon using a benchmark
problem other than those reported in this article. While no
population size was suggested in the corresponding papers
for 100-dimensional problems, [37] finds that bigger swarms
are better suited for solving complex problems, such as
high-dimensional ones. Therefore, the population sizes for
all algorithms except TAD-PSO were increased to 50 for
the 100-dimensional experiments, and reduced to 30 for 10
dimensions. Note that all PSO variants were also tested using
the TAD-PSO population sizes, but this led to poor results
for all but the TAD-PSO algorithm. For space concerns, these
results are not presented in this paper.

C. Experimental results

Table III presents the average performance over 30
runs of each algorithm on each benchmark function, in
30 dimensions. TAD-PSO ranks first in most cases, and
never falls below third place, on average always returning
a competitive solution. Table IV presents similar results in
100 dimensions, where TAD-PSO returns the best solutions

for most functions, although it does fall below third rank
once. For space considerations, the results in 10 dimensions
are not presented in this paper, but are available at
http://graal.ift.ulaval.ca/public/10D.pdf.
Overall, TAD-PSO has a clear edge on the other algorithms.
This edge is at its best on the rotated and shifted versions
of the benchmark functions, which seems to indicate that
TAD-PSO has better chance to perform well on real life
problems.

Also, observe that OLPSO-G and OLPSO-L appear to
have complementary performances. Indeed, OLPSO-G gen-
erally outranks OLPSO-L on unimodal and unrotated func-
tions, while the opposite seems to be true for multimodal and
rotated functions, which are more challenging to optimize.
This is related to the fact that OLPSO solutions depend on
the chosen topology. In contrast, TAD-PSO was designed not
to depend on topology and performs uniformly well on both
unimodal and multimodal functions.

As suggested in [38], a two-step procedure is used to
compare TAD-PSO with the six other algorithms. First,
Friedman’s test is used to rank the algorithms amongst each
other and test the null hypothesis that the algorithms are all
equivalent. In every case, the null hypothesis was rejected
(p < 0.05). The second step consists of a post-hoc test,
the null hypothesis of which is that the mean results of
the control method (TAD-PSO) is equal to the mean results
of each of the other PSO variants (i.e. six tests in total).

TABLE III
BENCHMARK RESULT COMPARISONS OF PSOS ON 19 GLOBAL OPTIMIZATION PROBLEMS (30 DIMENSIONS)

Function PSO-G PSO-L CLPSO HPSO-TVAC OLPSO-G OLPSO-L TAD-PSO

Schwefel’s P1.2
f1

Mean 1.012 2.991 8.123 9.736e-10 3.250e-3 0.823 1.032e-4
SD 0.353 1.055 1.946 1.662e-9 5.562e-3 0.684 1.841e-4

Rank 5 6 7 1 3 4 2

Rosenbrock
f2

Mean 53.055 55.865 14.536 6.509 21.610 3.640 0.021
SD 33.507 23.640 9.79 5.125 30.465 6.420 0.021

Rank 6 7 4 3 5 2 1

Elliptic
f3

Mean 40.780 126.296 6.671e-12 1.455e-19 1.068e-69 3.175e-33 1.472e-62
SD 22.676 46.415 5.046e-12 6.345e-20 2.742e-69 1.093e-32 3.455e-62

Rank 6 7 5 4 1 3 2

Sphere
f4

Mean 0.920 8.402 2.419e-12 8.328e-21 6.990e-72 1.624e-35 2.128e-63
SD 0.641 3.522 1.132e-12 3.396e-21 1.741e-71 5.162e-35 8.885e-63

Rank 6 7 5 4 1 3 2

Rastrigin
f5

Mean 48.426 19.707 9.471e-5 0.365 3.051 1.895e-15 0.0
SD 10.620 4.353 1.128e-4 0.748 1.703 1.020e-14 0.0

Rank 7 6 3 4 5 2 1

Ackley
f6

Mean 3.126 1.951 5.050e-7 6.522e-11 5.566e-15 6.869e-15 4.974e-15
SD 0.576 0.450 1.345e-7 1.157e-11 1.760e-15 8.862e-16 1.740e-15

Rank 7 6 5 4 2 3 1

Schwefel
f7

Mean 5631.682 5320.552 2.581e-10 1396.914 435.606 2.583e-4 1.213e-12
SD 652.454 644.091 1.714e-10 258.064 265.949 2.156e-4 1.182e-12

Rank 7 6 2 5 4 3 1

Alpine
f8

Mean 1.742 0.597 6.878e-4 2.784e-10 2.598e-15 7.979e-8 5.727e-12
SD 0.832 0.342 2.029e-4 1.597e-10 2.202e-15 2.862e-7 3.083e-11

Rank 7 6 5 3 1 4 2

Griewank
f9

Mean 0.701 1.070 6.816e-9 0.015 4.503e-3 0.0 0.0
SD 0.159 0.039 6.545e-9 0.019 0.010 0.0 0.0

Rank 6 7 3 5 4 1 1

Generalized Penalized
f10

Mean 3.704e-31 0.0 0.0 5.664e-31 1.215e-32 0.0 0.0
SD 6.389e-31 0.0 0.0 9.110e-31 4.544e-32 0.0 0.0

Rank 6 1 1 7 5 1 1

Rotated Schwefel
f11

Mean 2205.323 3676.135 3208.419 5385.639 688.816 433.874 159.444
SD 647.201 976.877 384.556 662.571 441.160 486.607 235.615

Rank 4 6 5 7 3 2 1

Rotated Rosenbrock
f12

Mean 74.403 51.407 44.847 11.653 28.366 22.758 20.067
SD 57.820 18.033 5.630 8.875 10.1663 11.639 3.170

Rank 7 6 5 1 4 3 2

Rotated Rastrigin
f13

Mean 64.094 51.655 78.979 25.814 38.568 44.740 5.845
SD 19.643 12.082 9.006 6.936 8.868 10.239 3.242

Rank 6 5 7 2 3 4 1

Shifted Rosenbrock
f14

Mean 63.512 101.083 56.093 4.812 11.601 1.462 0.038
SD 61.965 87.208 20.043 11.892 23.620 3.868 0.069

Rank 6 7 5 3 4 2 1

Shifted Rastrigin
f15

Mean 100.851 63.089 3.273 0.929 6.832 0.265 0.0
SD 21.350 15.242 0.985 1.333 2.447 0.440 0.0

Rank 7 6 4 3 5 2 1

Shifted Rotated Rastrigin
f16

Mean 166.826 109.473 75.110 119.592 48.486 53.560 6.314
SD 32.494 22.604 7.638 25.990 11.150 12.469 1.720

Rank 7 5 4 6 2 3 1

Shifted Rotated Happy Cat
f17

Mean 0.557 0.361 0.150 0.487 0.212 0.199 0.128
SD 0.151 0.081 5.213e-2 0.207 5.558e-2 4.802e-2 1.756e-2

Rank 7 5 2 6 4 3 1

Shifted Rotated Levy
f18

Mean 2727.888 304.904 95.196 2057.611 2.466 0.517 3.330e-2
SD 1707.314 516.719 79.863 977.051 9.778 1.603 9.012e-2

Rank 7 5 4 6 3 2 1

Shifted Rotated HGBat
f19

Mean 0.493 1.496 0.209 0.476 0.408 0.323 0.385
SD 0.258 2.164 7.456e-2 0.247 0.142 3.339 3.762e-2

Rank 6 7 1 5 4 2 3
Ave. rank 6.316 6.000 4.053 4.158 3.316 2.579 1.369
Final rank 7 6 4 5 3 2 1
Algorithms PSO-G PSO-L CLPSO HPSO-TVAC OLPSO-G OLPSO-L TAD-PSO

Note that changing the number of dimensions changes the
underlying functions in a profound enough way [39], [13]
that it significantly alters the optimization performance of the
various algorithms [12], [23], [15], [20]. With that in mind,
functions in the different dimensions can be considered to be
distinct benchmark functions. As such, the statistical tests can

be applied to the concatenation of the results in the different
dimensions. This triples the data points from 19 to 57, greatly
increasing the power of the statistical tests. As can be seen
in Table V, the null hypothesis, under these conditions, is
rejected every time, meaning that TAD-PSO overall performs
significantly better than all the other algorithms.

TABLE IV
BENCHMARK RESULT COMPARISONS OF PSOS ON 19 GLOBAL OPTIMIZATION PROBLEMS (100 DIMENSIONS)

Function PSO-G PSO-L CLPSO HPSO-TVAC OLPSO-G OLPSO-L TAD-PSO

Schwefel’s P1.2
f1

Mean 118.532 62.458 1051.594 0.157 244.837 475.505 91.964
SD 21.095 13.763 86.545 0.097 65.929 128.818 31.589

Rank 4 2 7 1 5 6 3

Rosenbrock
f2

Mean 633.846 756.390 191.807 113.688 46.267 3.213 0.166
SD 137.158 108.231 52.727 38.956 54.048 12.352 0.174

Rank 6 7 5 4 3 2 1

Elliptic
f3

Mean 976.225 2036.556 6.251e-7 8.849e-17 2.442e-44 2.489e-19 4.282e-37
SD 229.203 296.693 1.561e-7 2.916e-17 9.298e-44 3.877e-19 1.245e-36

Rank 6 7 5 4 1 3 2

Sphere
f4

Mean 78.290 330.663 2.335e-7 2.413e-17 6.784e-47 1.751e-21 1.861e-38
SD 19.391 49.578 5.860e-8 8.693e-18 1.715e-46 3.848e-21 4.676e-38

Rank 6 7 5 4 1 3 2

Rastrigin
f5

Mean 224.640 126.230 142.416 11.542 13.830 0.133 0.0
SD 33.143 15.243 9.993 8.081 6.183 0.425 0.0

Rank 7 5 6 3 4 2 1

Ackley
f6

Mean 7.248 4.633 1.002e-4 1.976e-9 9.711e-15 1.533e-9 6.241e-14
SD 0.668 0.240 9.679e-6 4.340e-10 3.299e-15 8.286e-10 1.013e-13

Rank 7 6 5 4 1 3 2

Schwefel
f7

Mean 23174.825 22936.395 771.640 4267.070 502.047 51.323 9.944e-12
SD 1827.283 1380.293 377.452 598.737 226.545 58.690 6.366e-12

Rank 7 6 4 5 3 2 1

Alpine
f8

Mean 24.499 9.075 0.085 3.620e-8 1.130e-14 8.931e-4 1.064e-4
SD 4.563 2.548 0.025 2.985e-8 8.935e-15 7.004e-4 6.641e-5

Rank 7 6 5 2 1 4 3

Griewank
f9

Mean 1.821 3.955 4.495e-7 0.011 0.001 0.0 0.0
SD 0.173 0.489 2.541e-7 0.013 0.007 0.0 0.0

Rank 6 7 3 5 4 1 1

Generalized Penalized
f10

Mean 0.996 5.597e-32 0.0 5.387e-31 6.219e-32 0.0 0.0
SD 2.540 3.014e-31 0.0 7.072e-31 3.021e-31 0.0 0.0

Rank 7 4 1 6 5 1 1

Rotated Schwefel
f11

Mean 2205.323 3676.135 18563.120 19887.658 1040.930 339.398 575.033
SD 647.201 976.877 616.851 3073.267 769.272 318.779 627.482

Rank 4 5 6 7 3 1 2

Rotated Rosenbrock
f12

Mean 662.811 803.915 97.184 81.361 122.521 169.373 131.502
SD 147.654 150.490 2.142 45.348 26.917 47.979 52.283

Rank 6 7 2 1 3 5 4

Rotated Rastrigin
f13

Mean 237.936 307.793 430.041 71.754 104.504 155.127 11.174
SD 43.782 47.917 22.097 13.534 21.374 28.639 3.118

Rank 5 6 7 2 3 4 1

Shifted Rosenbrock
f14

Mean 633.873 3512.113 248.419 107.850 35.497 7.813 1.196
SD 343.957 1159.389 64.070 47.962 54.836 20.464 1.226

Rank 6 7 5 4 3 2 1

Shifted Rastrigin
f15

Mean 741.799 521.107 180.615 29.116 37.444 1.459 0.531
SD 102.652 44.060 12.429 25.712 8.778 0.986 0.559

Rank 7 6 5 3 4 2 1

Shifted Rotated Rastrigin
f16

Mean 795.473 731.826 468.640 304.366 160.613 179.744 16.541
SD 127.527 71.654 25.879 49.098 27.785 33.770 4.211

Rank 7 6 5 4 2 3 1

Shifted Rotated Happy Cat
f17

Mean 0.619 5.244 0.408 0.569 0.367 0.269 0.227
SD 0.108 0.564 5.490e-2 0.161 5.694e-2 4.767e-2 2.640e-2

Rank 6 7 4 5 3 2 1

Shifted Rotated Levy
f18

Mean 26982.031 23197.826 12068.214 14265.778 295.680 528.595 9.769e-2
SD 4538.699 4538.699 2473.329 1697.539 366.699 611.434 0.204

Rank 7 6 4 5 2 3 1

Shifted Rotated HGBat
f19

Mean 0.655 289.460 0.277 0.506 0.484 0.402 0.457
SD 0.255 48.718 0.103 0.239 0.129 3.134e-2 1.525e-2

Rank 6 7 1 5 4 2 3
Ave. rank 6.158 6.000 4.474 3.895 2.895 2.684 1.685
Final rank 7 6 5 4 3 2 1
Algorithms PSO-G PSO-L CLPSO HPSO-TVAC OLPSO-G OLPSO-L TAD-PSO

TABLE V
AVERAGE RANKING FROM FRIEDMAN’S TEST AND HOLM NULL

HYPOTHESIS TESTING

PSO-
G

PSO-
L CLPSO HPSO-

TVAC
OLPSO-
G

OLPSO-
L

TAD-
PSO

10D&
30D&
100D

Rank 6.187 5.904 4.009 3.947 3.263 3.009 1.658

h 1 1 1 1 1 1 -

10D Rank 6.158 5.763 4.316 3.526 3.395 3.184 1.658
h 1 1 1 1 1 1 -

30D Rank 6.263 5.895 4.053 4.158 3.263 2.921 1.447
h 1 1 1 1 1 1 -

100D Rank 6.211 6.053 4.579 3.368 3.000 2.921 1.868
h 1 1 1 0 0 0 -

*Reject null hypothesis (h = 1), accept null hypothesis (h = 0).

VI. CONCLUSION

This paper presented a novel algorithm, Time Adaptive
Dual Particle Swarm Optimization (TAD-PSO), which makes
use of key concepts from OLPSO, CLPSO and HPSO-TVAC.
TAD-PSO employs two populations, with information being

shared only from the main to the auxiliary population. The
main population takes inspiration from CLPSO and OLPSO,
using orthogonal learning to find the most interesting direc-
tions to explore in every dimension. The auxiliary population
is a PSO-TVAC swarm, chosen for its high performance
on unimodal problems. The decaying main population size
achieves the trade-off between exploration of the search
space and exploitation of the interesting local minima.

Comprehensive experimental tests were conducted on 19
benchmark problems of three types: unimodal, multimodal,
and shifted/rotated functions. The results show that TAD-
PSO achieves better performance than any of the PSO
algorithms it is based on, while still being intuitive and easy
to implement.

Future works will focus on developing a heuristic for
handling the decay of the main population, and will compare
TAD-PSO to a broader range of optimization algorithms.

REFERENCES

[1] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[2] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-
J. Li, “Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art,” Applied Soft Computing, vol. 34, pp. 286–300,
2015.

[3] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16–37,
2016.

[4] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” Interna-
tional Journal of Bio-Inspired Computation, vol. 3, no. 5, pp. 267–274,
2011.

[5] G.-G. Wang, A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “A new
hybrid method based on krill herd and cuckoo search for global op-
timisation tasks,” International Journal of Bio-Inspired Computation,
vol. 8, no. 5, pp. 286–299, 2016.

[6] X.-S. Yang and S. Deb, “Cuckoo search: recent advances and ap-
plications,” Neural Computing and Applications, vol. 24, no. 1, pp.
169–174, 2014.

[7] S. Mirjalili, “The ant lion optimizer,” Advances in Engineering Soft-
ware, vol. 83, pp. 80–98, 2015.

[8] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[9] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, “Cat swarm optimization,”
in Pacific Rim International Conference on Artificial Intelligence.
Springer, 2006, pp. 854–858.

[10] R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle
swarm theory,” in Proceedings of the sixth international symposium
on micro machine and human science, vol. 1. New York, NY, 1995,
pp. 39–43.

[11] K.-L. Du and M. Swamy, “Particle swarm optimization,” in Search
and Optimization by Metaheuristics. Springer, 2016, pp. 153–173.

[12] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of mul-
timodal functions,” IEEE transactions on evolutionary computation,
vol. 10, no. 3, pp. 281–295, 2006.

[13] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 6, pp. 832–847, 2011.

[14] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” Congress on evolutionary computation: proceedings,
2002.

[15] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Transactions on evolutionary computation, vol. 8,
no. 3, pp. 240–255, 2004.

[16] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of ma-
chine learning. Springer, 2011, pp. 760–766.

[17] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evo-
lutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on. IEEE, 1998, pp. 69–73.

[18] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm opti-
mization,” in Evolutionary Computation, 1999. CEC 99. Proceedings
of the 1999 Congress on, vol. 3. IEEE, 1999.

[19] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood
topology on particle swarm performance,” in Evolutionary Computa-
tion, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3.
IEEE, 1999.

[20] S. Helwig, J. Branke, and S. Mostaghim, “Experimental analysis of
bound handling techniques in particle swarm optimization,” IEEE
Transactions on Evolutionary computation, vol. 17, no. 2, pp. 259–
271, 2013.

[21] J. Barrera, O. Álvarez Bajo, J. J. Flores, and C. A. Coello Coello,
“Limiting the velocity in the particle swarm optimization algorithm,”
Computación y Sistemas, vol. 20, no. 4, 2016.

[22] M. A. M. De Oca, T. Stutzle, M. Birattari, and M. Dorigo, “Franken-
stein’s pso: a composite particle swarm optimization algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1120–
1132, 2009.

[23] Q. Qin, S. Cheng, Q. Zhang, Y. Wei, and Y. Shi, “Multiple strategies
based orthogonal design particle swarm optimizer for numerical op-
timization,” Computers & Operations Research, vol. 60, pp. 91–110,
2015.

[24] M. R. Tanweer, S. Suresh, and N. Sundararajan, “Self regulating
particle swarm optimization algorithm,” Information Sciences, vol.
294, pp. 182–202, 2015.

[25] Z. Beheshti and S. M. Shamsuddin, “Non-parametric particle swarm
optimization for global optimization,” Applied Soft Computing, vol. 28,
pp. 345–359, 2015.

[26] Q. Ni and J. Deng, “A new logistic dynamic particle swarm opti-
mization algorithm based on random topology,” The Scientific World
Journal, vol. 2013, 2013.

[27] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of
all global minimizers through particle swarm optimization,” IEEE
Transactions on evolutionary computation, vol. 8, no. 3, pp. 211–224,
2004.

[28] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE transactions on evolutionary
computation, vol. 8, no. 3, pp. 225–239, 2004.

[29] D. C. Montgomery, Design and analysis of experiments. John Wiley
& Sons, 2008.

[30] K.-T. Fang and Y. Wang, Number-theoretic methods in statistics. CRC
Press, 1993, vol. 51.

[31] J. Kennedy, “Stereotyping: improving particle swarm performance
with cluster analysis stereotyping: improving particle swarm perfor-
mance with cluster analysis,” in Evolutionary Computation, 2000.
Proceedings of the 2000 Congress on, vol. 2, 2000, pp. 1507–1512.

[32] T. Back, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

[33] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67–82, 1997.

[34] K.-L. Du and M. Swamy, “Introduction,” in Search and Optimization
by Metaheuristics. Springer, 2016, pp. 1–28.

[35] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: simpler, maybe better,” IEEE transactions on evolutionary
computation, vol. 8, no. 3, pp. 204–210, 2004.

[36] N. Awad, M. Ali, J. Liang, B. Qu, and P. Suganthan, “Problem
definitions and evaluation criteria for the cec 2017 special session
and competition on single objective real-parameter numerical opti-
mization,” 2016.

[37] D. Chen and C. Zhao, “Particle swarm optimization with adaptive
population size and its application,” Applied Soft Computing, vol. 9,
no. 1, pp. 39–48, 2009.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30,
2006.

[39] D. L. Donoho et al., “High-dimensional data analysis: The curses and
blessings of dimensionality,” AMS Math Challenges Lecture, vol. 1,
p. 32, 2000.

